E-learning is achieved by the deep integration of modern education and information technology, and plays an important role in promoting educational equity. With the continuous expansion of user groups and application areas, it has become increasingly important to effectively ensure the quality of e-learning. Currently, one of the methods to ensure the quality of e-learning is to use mutually independent e-learning behaviour data to build a learning performance predictor to achieve real-time supervision and feedback during the learning process. However, this method ignores the inherent correlation between e-learning behaviours. Therefore, we propose the behaviour classification-based e-learning performance (BCEP) prediction framework, which selects the features of e-learning behaviours, uses feature fusion with behaviour data according to the behaviour classification model to obtain the category feature values of each type of behaviour, and finally builds a learning performance predictor based on machine learning. In addition, because existing e-learning behaviour classification methods do not fully consider the process of learning, we also propose an online behaviour classification model based on the e-learning process called the process-behaviour classification (PBC) model. Experimental results with the Open University Learning Analytics Dataset (OULAD) show that the learning performance predictor based on the BCEP prediction framework has a good prediction effect, and the performance of the PBC model in learning performance prediction is better than traditional classification methods. We construct an e-learning performance predictor from a new perspective and provide a new solution for the quantitative evaluation of e-learning classification methods.
Learning analysis provides a new opportunity for the development of online education, and has received extensive attention from scholars at home and abroad. How to use data and models to predict learners’ academic success or failure and give teaching feedback in a timely manner is a core problem in the field of learning analytics. At present, many scholars use key learning behaviors to improve the prediction effect by exploring the implicit relationship between learning behavior data and grades. At the same time, it is very important to explore the association between categories and prediction effects in learning behavior classification. This paper proposes a self-adaptive feature fusion strategy based on learning behavior classification, aiming to mine the effective E-learning behavior feature space and further improve the performance of the learning performance prediction model. First, a behavior classification model (E-learning Behavior Classification Model, EBC Model) based on interaction objects and learning process is constructed; second, the feature space is preliminarily reduced by entropy weight method and variance filtering method; finally, combined with EBC Model and a self-adaptive feature fusion strategy to build a learning performance predictor. The experiment uses the British Open University Learning Analysis Dataset (OULAD). Through the experimental analysis, an effective feature space is obtained, that is, the basic interactive behavior (BI) and knowledge interaction behavior (KI) of learning behavior category has the strongest correlation with learning performance.And it is proved that the self-adaptive feature fusion strategy proposed in this paper can effectively improve the performance of the learning performance predictor, and the performance index of accuracy(ACC), F1-score(F1) and kappa(K) reach 98.44%, 0.9893, 0.9600. This study constructs E-learning performance predictors and mines the effective feature space from a new perspective, and provides some auxiliary references for online learners and managers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.