In this paper, a highly effective electrochemical sensor based on graphene (Gr)/copper phthalocyanine (CuPc) nanocomposites was successfully designed and achieved. The morphology of Gr/CuPc nanocomposites was characterized by UV-vis, IR, Raman spectra and scanning electron microscopy (SEM). Gr/CuPc nanocomposites were gathered on the surface of the glassy carbon electrode (GCE), and the performence of Gr/CuPc/GCE toward chloramphenicol (CAP) and florfenicol (FF) was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The Gr/CuPc/GCE presented good electrochemical properties, stability, reproducibility, excellent anti-interference ability and satisfying recovery rate in real samples for the detection of CAP and FF. The performance of Gr/CuPc/GCE exhibited a linear ranging from 1.0 × 10 −7 to 2.0 × 10 −5 M with a detection limit of 2.7 × 10 −8 M (−0.652 V vs. Hg/Hg 2 Cl 2 , S/N = 3) toward CAP. For FF, it exhibited a linear ranging from 1.0 × 10 −6 to 3.0 × 10 −5 M with a detection limit of 7.5 × 10 −7 M (−0.863 V vs. Hg/Hg 2 Cl 2 , S/N = 3). Furthermore, it is for the first time that FF is determined by electrochemical sensor through nanocomposites modified electrode. This proposed electrochemical sensor can provide an opportunity for convenient and reliable determination of CAP or FF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.