Ceramic image shape 3D image modeling focuses on of ceramic that was obtained from the camera imaging equipment such as 2D images, by normalization, gray, filtering denoising, wavelet image sharpening edge enhancement, binarization, and shape contour extraction pretreatment processes such as extraction ceramic image shape edge profile, again, according to the image edge extraction and elliptic rotator ceramics phenomenon. The image distortion effect was optimized by self-application, and then the deep learning modeler was used to model the side edge contour. Finally, the 3D ceramic model of the rotating body was restored according to the intersection and central axis of the extracted contour. By studying the existing segmentation methods based on deep learning, the automatic segmentation of target ceramic image and the effect of target edge refinement and optimization are realized. After extracting and separating the target ceramics from the image, we processed the foreground image of the target into a three-dimensional model. In order to reduce the complexity of the model, a 3D contextual sequencing model is adopted to encode the hidden space features along the channel dimensions, to extract the causal correlation between channels. Each module in the compression framework is optimized by a rate-distortion loss function. The experimental results show that the proposed 3D image modeling method has significant advantages in compression performance compared with the optimal 2D 3D image modeling method based on deep learning, and the experimental results show that the performance of the proposed method is superior to JP3D and HEVC methods, especially at low bit rate points.
With the development of the times, intelligent space simulation technology has gradually emerged in the design of ceramic forms, and the development of modern ceramics has gradually transformed into artistic development. The development of ceramics must conform to the design trend, adjust the rhythm, and seek development opportunities. Organic design opens up a green channel for ceramics and integrates into the lives of today’s people. This paper mainly discusses the external form of ceramics and studies from two levels of curve form and bionic form. Through the intelligent space simulation technology, the shape design of ceramics is studied, and the optimal shape of ceramics is obtained, which enables people to have a better understanding of ceramic art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.