Electron beams (e-beams) have been applied as detecting probes and clean energy sources in many applications. In this work, we investigated several approaches for measurement and estimation of the range and distribution of local temperatures on a subject surface under irradiation of nano-microscale e-beams. We showed that a high-intensity e-beam with current density of 105-6 A/cm2 could result in vaporization of solid Si and Au materials in seconds, with a local surface temperature higher than 3000 K. With a lower beam intensity to 103-4 A/cm2, e-beams could introduce local surface temperature in the range of 1000–2000 K shortly, causing local melting in metallic nanowires and Cr, Pt, and Pd thin films, and phase transition in metallic Mg-B films. We demonstrated that thin film thermocouples on a freestanding Si3N4 window were capable of detecting peaked local surface temperatures up to 2000 K and stable, and temperatures in a lower range with a high precision. We discussed the distribution of surface temperatures under e-beams, thermal dissipation of thick substrate, and a small converting ratio from the high kinetic energy of e-beam to the surface heat. The results may offer some clues for novel applications of e-beams.
Deep-level sensors for detecting the local temperatures of inner organs and tissues of an animal are rarely reported. In this paper, we present a method to fabricate multifunctional micro-probes with standard cleanroom procedures, using a piece of stainless-steel foil as the substrate. On each of the as-fabricated micro-probes, arrays of thermocouples made of Pd–Cr thin-film stripes with reliable thermal sensing functions were built, together with Pd electrode openings for detecting electrical signals. The as-fabricated sword-shaped freestanding microprobes with length up to 30 mm showed excellent mechanical strength and elastic properties when they were inserted into the brain and muscle tissues of live rats, as well as suitable electrochemical properties and, therefore, are promising for potential biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.