Hexagonal boron nitride (h-BN), a layered material similar to graphite, is a promising dielectric. Monolayer h-BN, so-called "white graphene", has been isolated from bulk BN and could be useful as a complementary two-dimensional dielectric substrate for graphene electronics. Here we report the large area synthesis of h-BN films consisting of two to five atomic layers, using chemical vapor deposition. These atomic films show a large optical energy band gap of 5.5 eV and are highly transparent over a broad wavelength range. The mechanical properties of the h-BN films, measured by nanoindentation, show 2D elastic modulus in the range of 200-500 N/m, which is corroborated by corresponding theoretical calculations.
Two-dimensional materials, such as graphene and monolayer hexagonal BN (h-BN), are attractive for demonstrating fundamental physics in materials and potential applications in next-generation electronics. Atomic sheets containing hybridized bonds involving elements B, N and C over wide compositional ranges could result in new materials with properties complementary to those of graphene and h-BN, enabling a rich variety of electronic structures, properties and applications. Here we report the synthesis and characterization of large-area atomic layers of h-BNC material, consisting of hybridized, randomly distributed domains of h-BN and C phases with compositions ranging from pure BN to pure graphene. Our studies reveal that their structural features and bandgap are distinct from those of graphene, doped graphene and h-BN. This new form of hybrid h-BNC material enables the development of bandgap-engineered applications in electronics and optics and properties that are distinct from those of graphene and h-BN.
Graphite oxide is one of the main precursors of graphene-based materials, which are highly promising for various technological applications because of their unusual electronic properties. Although epoxy and hydroxyl groups are widely accepted as its main functionalities, the complete structure of graphite oxide has remained elusive. By interpreting spectroscopic data in the context of the major functional groups believed to be present in graphite oxide, we now show evidence for the presence of five- and six-membered-ring lactols. On the basis of this chemical composition, we devised a complete reduction process through chemical conversion by sodium borohydride and sulfuric acid treatment, followed by thermal annealing. Only small amounts of impurities are present in the final product (less than 0.5 wt% of sulfur and nitrogen, compared with about 3 wt% with other chemical reductions). This method is particularly effective in the restoration of the π-conjugated structure, and leads to highly soluble and conductive graphene materials.
Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.
There is strong recent interest in ultrathin, flexible, safe energy storage devices to meet the various design and power needs of modern gadgets. To build such fully flexible and robust electrochemical devices, multiple components with specific electrochemical and interfacial properties need to be integrated into single units. Here we show that these basic components, the electrode, separator, and electrolyte, can all be integrated into single contiguous nanocomposite units that can serve as building blocks for a variety of thin mechanically flexible energy storage devices. Nanoporous cellulose paper embedded with aligned carbon nanotube electrode and electrolyte constitutes the basic unit. The units are used to build various flexible supercapacitor, battery, hybrid, and dual-storage battery-in-supercapacitor devices. The thin freestanding nanocomposite paper devices offer complete mechanical flexibility during operation. The supercapacitors operate with electrolytes including aqueous solvents, room temperature ionic liquids, and bioelectrolytes and over record temperature ranges. These easy-to-assemble integrated nanocomposite energy-storage systems could provide unprecedented design ingenuity for a variety of devices operating over a wide range of temperature and environmental conditions. batteries ͉ carbon nanotubes ͉ supercapacitor T here has been recent interest in flexible safe energy devices, based on supercapacitors and batteries, to meet the various requirements of modern gadgets (1-3). Electrochemical energy can be stored in two fundamentally different ways. In a battery, the charge storage is achieved by electron transfer that produces a redox reaction in the electroactive materials (3). In an electric double-layer capacitor, namely the supercapacitor, the chargestorage process is nonFaradic, that is, ideally no electron transfer takes place across the electrode interface, and the storage of electric charge and energy is electrostatic. Because the charging and discharging of such supercapacitors involve no chemical phase and composition changes, such capacitors have a high degree of cyclability. However, in certain supercapacitors based on pseudocapacitance, the essential process can be Faradic, similar to that in a battery. However, an essential fundamental difference from battery behavior arises because, in such systems, the chemical and associated electrode potentials are a continuous function of degree of charge, unlike the thermodynamic behavior of single-phase battery reactants (3). Now, with the demand for efficient power devices to meet the high-power and -energy applications, there seems to be the possibility of an ideal compromise, which combines some of the storage capabilities of batteries and some of the power-discharge characteristics of capacitors in devices capable of storing useful quantities of electricity that can be discharged very quickly. We address here this need to develop new integrated hybrid devices with adaptability in various thin-film as well as bulk applications by using...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.