The exploratory and confirmatory approaches of factor analysis lie on two ends of a continuum of substantive input for scale development. Recent advancements in Bayesian regularization methods enable more flexibility in covering a wide range of the substantive continuum. Based on the Bayesian Lasso (least absolute shrinkage and selection operator) methods for the regression model and covariance matrix, this research proposes a partially confirmatory approach to address the loading and residual structures at the same time. With at least one specified loading per item, a one-step procedure can be applied to figure out both structures simultaneously. With a few specified loadings per factor, a two-step procedure is preferred to capture the model configuration correctly. In both cases, the Bayesian hierarchical formulation is implemented using Markov Chain Monte Carlo estimation with different Lasso or regular priors. Both simulated and real data sets were analyzed to evaluate the validity, robustness, and practical usefulness of the proposed approach across different situations.
The aim of this cross-sectional study was to examine the mediating effects of individual affect and relationship satisfaction on the relationship between self-esteem and Problematic Internet Use (PIU). Affect was measured using the Positive and Negative Affect Schedule (PANAS), relationship satisfaction was assessed using a positive and negative semantic dimension scale, self-esteem was measured using the Rosenberg Self-Esteem Scale, and PIU was measured using the Problematic Internet Use scale with a sample of 507 Chinese university students (Mage = 20.41 years, SD = 2.49). The relationships between the variables were tested using structural equation modelling with a multiple mediation model. The results revealed that negative affect and the negative semantic dimensions of relationship satisfaction mediated the relationship between self-esteem and PIU. The implications of the results and the study’s theoretical contributions are discussed.
An increasing number of studies have focused on models that integrate moderation and mediation. Four approaches can be used to test integrated mediation and moderation models: path analysis (PA), product indicator analysis (PI, constrained approach and unconstrained approach), and latent moderated structural equations (LMS). To the best of our knowledge, few studies have compared the performances of PA, PI, and LMS in evaluating integrated mediation and moderation models. As a result, it is difficult for applied researchers to choose an appropriate method in their data analysis. This study investigates the performance of different approaches in analyzing the models, using the second-stage moderated mediation model as a representative model to be evaluated. Four approaches with bootstrapped standard errors are compared under different conditions. Moreover, LMS with robust standard errors and Bayesian estimation of LMS and PA were also considered. Results indicated that LMS with robust standard errors is the superior evaluation method in all study settings. And PA estimates could be severely underestimated as they ignore measurement errors. Furthermore, it is found that the constrained PI and unconstrained PI only provide acceptable estimates when the multivariate normal distribution assumption is satisfied. The practical guidelines were also provided to illustrate the implementation of LMS. This study could help to extend the application of LMS in psychology and social science research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.