MicroRNAs (miRNAs), which are short (22–24 base pairs), non-coding RNAs, play critical roles in myogenesis. Using Solexa deep sequencing, we detected the expression levels of 229 and 209 miRNAs in swine skeletal muscle at 90 days post-coitus (E90) and 100 days postnatal (D100), respectively. A total of 138 miRNAs were up-regulated on E90, and 31 were up-regulated on D100. Of these, 9 miRNAs were selected for the validation of the small RNA libraries by quantitative RT-PCR (RT-qPCR). We found that miRNA-21 was down-regulated by 17-fold on D100 (P<0.001). Bioinformatics analysis suggested that the transforming growth factor beta-induced (TGFβI) gene was a potential target of miRNA-21. Both dual luciferase reporter assays and western blotting demonstrated that the TGFβI gene was regulated by miRNA-21. Co-expression analysis revealed that the mRNA expression levels of miRNA-21 and TGFβI were negatively correlated (r = -0.421, P = 0.026) in skeletal muscle during the 28 developmental stages. Our results revealed that more miRNAs are expressed in prenatal than in postnatal skeletal muscle. The miRNA-21 is a novel myogenic miRNA that is involved in skeletal muscle development and regulates PI3K/Akt/mTOR signaling by targeting the TGFβI gene.
The Farm animal Genotype-Tissue Expression (FarmGTEx, https://www.farmgtex.org/) project has been established to develop a comprehensive public resource of genetic regulatory variants in domestic animal species, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biology discovery and exploitation in animal breeding and human biomedicine. Here we present results from the pilot phase of PigGTEx (http://piggtex.farmgtex.org/), where we processed 9,530 RNA-sequencing and 1,602 whole-genome sequencing samples from pigs. We build a pig genotype imputation panel, characterize the transcriptional landscape across over 100 tissues, and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We study interactions between genotype and breed/cell type, evaluate tissue specificity of regulatory effects, and elucidate the molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying about 80% of the genetic associations for 207 pig complex phenotypes, and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, corroborating the importance of pigs as a human biomedical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.