Kernel Regularized Least Squares (KRLS) is a fundamental learner in machine learning. However, due to the high time and space requirements, it has no capability to large scale scenarios. Therefore, we propose DC-NY, a novel algorithm that combines divide-and-conquer method, Nyström, conjugate gradient, and preconditioning to scale up KRLS, has the same accuracy of exact KRLS and the minimum time and space complexity compared to the state-of-the-art approximate KRLS estimates. We present a theoretical analysis of DC-NY, including a novel error decomposition with the optimal statistical accuracy guarantees. Extensive experimental results on several real-world large-scale datasets containing up to 1M data points show that DC-NY significantly outperforms the state-of-the-art approximate KRLS estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.