Programmed necrotic cell death induced by the tumor necrosis factor alpha (TNF-α) family of cytokines is dependent on a kinase cascade consisting of receptor-interacting kinases RIP1 and RIP3. How these kinase activities cause cells to die by necrosis is not known. The mixed lineage kinase domain-like protein MLKL is a functional RIP3 substrate that binds to RIP3 through its kinase-like domain but lacks kinase activity of its own. RIP3 phosphorylates MLKL at the T357 and S358 sites. Reported here is the development of a monoclonal antibody that specifically recognizes phosphorylated MLKL in cells dying of this pathway and in human liver biopsy samples from patients suffering from drug-induced liver injury. The phosphorylated MLKL forms an oligomer that binds to phosphatidylinositol lipids and cardiolipin. This property allows MLKL to move from the cytosol to the plasma and intracellular membranes, where it directly disrupts membrane integrity, resulting in necrotic death.
Neurotransmitter release depends critically on Munc18-1, Munc13, the Ca2+ sensor synaptotagmin-1 and the SNAREs syntaxin-1, synaptobrevin and SNAP-25. In-vitro reconstitutions have shown that syntaxin-1-SNAP-25-liposomes fuse efficiently with synaptobrevin-liposomes in the presence of synaptotagmin-1-Ca2+, but neurotransmitter release also requires Munc18-1 and Munc13 in vivo. Here we found that Munc18-1 could displace SNAP-25 from syntaxin-1 and that fusion of syntaxin-1-Munc18-1-liposomes with synaptobrevin-liposomes required Munc13, in addition to SNAP-25 and synaptotagmin-1-Ca2+. Moreover, when starting with syntaxin-1-SNAP-25 liposomes, NSF-α-SNAP disassembled the syntaxin-1-SNAP-25 heterodimers and abrogated fusion, which then required Munc18-1 and Munc13. We propose that fusion does not proceed through syntaxin-1-SNAP-25 heterodimers, but starts with the syntaxin-1-Munc18-1 complex; Munc18-1 and Munc13 then orchestrate membrane fusion together with the SNAREs and synaptotagmin-1-Ca2+ in an NSF- and SNAP-resistant manner.
The NLRP3 inflammasome responds to microbes and danger signals by processing and activating proinflammatory cytokines including IL-1β and IL-18. We show that NLRP3 inflammasome activation is restricted to interphase of the cell cycle by NEK7, a serine/threonine kinase previously implicated in mitosis. NLRP3 inflammasome activation requires NEK7, which binds to the NLRP3 leucine-rich repeat domain in a kinase-independent manner downstream from the induction of mitochondrial ROS. This interaction is necessary for NLRP3-ASC complex formation, ASC oligomerization, and caspase-1 activation. NEK7 promotes the NLRP3-dependent cellular inflammatory response to intraperitoneal monosodium urate challenge, and the development of experimental autoimmune encephalitis in mice. Our findings suggest NEK7 serves as a cellular switch that enforces mutual exclusivity between the inflammasome response and cell division.
Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca2+-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a ‘primed’ state that does not fuse but is ready for fast fusion upon Ca2+ influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion.DOI: http://dx.doi.org/10.7554/eLife.13696.001
SUMMARY MLKL is crucial for necroptosis, permeabilizing membranes through its N-terminal region upon phosphorylation of its kinase-like domain by RIP3. However, the mechanism underlying membrane permeabilization is unknown. The solution structure of the MLKL N-terminal region determined by NMR spectroscopy reveals a four-helix bundle with an additional helix at the top that is likely key for MLKL function, and a sixth, C-terminal helix that interacts with the top helix and with a poorly packed interface within the four-helix bundle. Fluorescence spectroscopy measurements indicate that much of the four-helix bundle inserts into membranes, but not the C-terminal helix. Moreover, we find that the four-helix bundle is sufficient to induce liposome leakage and that the C-terminal helix inhibits this activity. These results suggest that the four-helix bundle mediates membrane breakdown during necroptosis and that the sixth helix acts as a plug that prevents opening of the bundle and is released upon RIP3 phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.