Effectsof microwave vacuum drying (MVD) on moisture migration, microstructure, and rehydration of sea cucumber were investigated in this paper. Vacuum condition avoided the exposure of sea cucumber to high temperature. Low‐field nuclear magnetic resonance relaxation results revealed that the peaks of three water components in sea cucumber shifted to short relaxation time during MVD process, and the peak area of major water component—immobilized water—decreased significantly due to water evaporation. Magnetic resonance imaging found that the water in the internal layer of sea cucumber body wall was first removed due to the internal heating of microwave, and then the water in the outer layer. Higher microwave power could promote the moisture transfer motion during drying process, and shorten the drying time. Porous microstructure was observed by Cryo scanning electronic microscope images in sea cucumber dried with microwave power of 200 and 250 W, which might be responsible for high values of rehydration ratio and water holding capacity. High microwave power caused the increase of amino acids content, but had no significant effect on the change of saponins content. In addition, excellent prediction models of moisture ratio have been developed by partial least squares regression analysis based on transverse relaxation data, which proved the feasibility of low‐field nuclear magnetic resonance to monitor moisture changes of sea cucumber during MVD process.
Practical Application
Effects of microwave vacuum drying (MVD) on moisture migration, microstructure, and rehydration of sea cucumber were investigated. Understanding the impacts of MVD drying on water status, texture, and nutritional characteristics of sea cucumber is important to improve the processing quality of dried sea cucumber.
The ring opening reaction of decalin was studied over two types of catalyst, including bifunctional catalysts (Ni–W carbide/Al2O3–USY) and monofunctional acid catalysts (Ni–W oxide/Al2O3–USY) with different amounts of metal loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.