In this paper, we study the bifurcations and dynamics of traveling wave solutions to a Fujimoto-Watanabe equation by using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the parametric space. Then we show the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, compactions and kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions and periodic wave solutions are implicitly given, while the expressions of kink-like and antikink-like wave solutions are explicitly shown. The dynamics of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of the nonlinear wave.
We study dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation using the method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the threedimensional parameter space. Then we show the required conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like (antikink-like) wave solutions, and compactons. Moreover, we present exact expressions and simulations of these traveling wave solutions. The dynamical behaviors of these new traveling wave solutions will greatly enrich the previews results and further help us understand the physical structures and analyze the propagation of nonlinear waves.
In this work, we apply the bifurcation method of dynamical systems to investigate the underlying complex dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation. We identify all bifurcation conditions and phase portraits of the system in different regions of the three-dimensional parametric space, from which we present the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like (antikink-like) wave solutions, and compactons. Furthermore, we obtain their exact expressions and simulations, which can help us understand the underlying physical behaviors of traveling wave solutions to the equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.