The inclination effect caused by fabrication errors on the periodic response of a symmetric MEMS gyroscope is investigated. The dynamic equation is established considering the inclination effect on support stiffness and electrostatic forces. The periodic response is obtained by the averaging method. The two-variable singularity theory is employed to study the bifurcation characteristics and give transition sets on the DC-AC voltage plane, which divide the plane into four persistent regions. The amplitude-frequency curves demonstrate that only the two persistent regions with low voltages are feasible for the gyroscope. Both over-etching and under-etching reduce the feasible region. The effect of parameters on the performance is present. The mechanical sensitivity and nonlinearity increase with the voltages. With the increase in the inclination angle, the mechanical sensitivity and nonlinearity decrease first and then increase. The full temperature stability of the mechanical sensitivity is also considered. The variation in mechanical sensitivity with temperature is small at a large voltage and negative inclination angle. Under-etching, which leads to small nonlinearity and good temperature stability, is more beneficial to the performance of the gyroscope than over-etching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.