Noncommunicable disease (NCD) scenario models are an essential part of the public health toolkit, allowing for an estimate of the health impact of population-level interventions that are not amenable to assessment by standard epidemiological study designs (e.g., health-related food taxes and physical infrastructure projects) and extrapolating results from small samples to the whole population. The PRIME (Preventable Risk Integrated ModEl) is an openly available NCD scenario model that estimates the effect of population-level changes in diet, physical activity, and alcohol and tobacco consumption on NCD mortality. The structure and methods employed in the PRIME are described here in detail, including the development of open source code that will support a PRIME web application to be launched in 2015. This paper reviews scenario results from eleven papers that have used the PRIME, including estimates of the impact of achieving government recommendations for healthy diets, health-related food taxes and subsidies, and low-carbon diets. Future challenges for NCD scenario modelling, including the need for more comparisons between models and the improvement of future prediction of NCD rates, are also discussed.
With the popularization of information and the establishment of the databases in great number, and how to extract data from the useful information is the urgent problem to be solved. Machine learning is the core issue of artificial intelligence research, this paper introduces the definition of machine learning and its basic structure, and describes a variety of machine learning methods, including rote learning, inductive learning, analogy learning , explained learning, learning based on neural network and knowledge discovery and so on. This paper also brings foreword the objectives of machine learning, and points out the development trend of machine learning.
This paper presents a novel method for learning a pose lexicon comprising semantic poses defined by textual instructions and their associated visual poses defined by visual features. The proposed method simultaneously takes two input streams, semantic poses and visual pose candidates, and statistically learns a mapping between them to construct the lexicon. With the learned lexicon, action recognition can be cast as the problem of finding the maximum translation probability of a sequence of semantic poses given a stream of visual pose candidates. Experiments evaluating pre-trained and zero-shot action recognition conducted on MSRC-12 gesture and WorkoutSu-10 exercise datasets were used to verify the efficacy of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.