Catalytic systems consisting of copper oxide and bismuth oxide are commonly employed for the industrial production of 1,4-butynediol (BD) through ethynylation. However, few studies have investigated the influence mechanism of Bi for these Cu-based catalysts. Herein, a series of nanostructured CuO-Bi2O3 catalysts were prepared by co-precipitation followed by calcination at different temperatures. The obtained catalysts were applied to the ethynylation reaction. The textural and crystal properties of the catalysts, their reduction behavior, and the interactions between copper and bismuth species, were found to strongly depend on temperature. When calcined at 600 °C, strong interactions between Cu and Bi in the CuO phase facilitated the formation of highly dispersed active cuprous sites and stabilized the Cu+ valency, resulting in the highest BD yield. Bi2O3 was completely absent when calcined at 700 °C, having been converted into the spinel CuBi2O4 phase. Spinel Cu2+ was released gradually to form active Cu+ species over eight catalytic cycles, which continuously replenished the decreasing activity resulting from the formation of metallic Cu and enhanced catalytic stability. Moreover, the positive correlation between the in-situ-formed surface Cu+ ions and BD yield suggests that the amount of Cu+ ions is the key factor for ethynylation of formaldehyde to BD on the as prepared CuO-Bi2O3 catalysts. Based on these results and the literature, we propose an ethynylation reaction mechanism for CuO-based catalysts and provide a simple design strategy for highly efficient catalytic CuO-Bi2O3 systems, which has considerable potential for industrial applications.
A Cu-based nano-catalyst has been widely used in the ethynylation of formaldehyde; however, the effects of the presence of Cu on the reaction have not yet been reported. CuO/SiO2 catalysts with different Cu species were prepared by impregnation (IM), deposition–precipitation (DP), and ammonia evaporation (AE). The structural evolution of the Cu species in different states of the ethynylation reaction and the structure–activity relationship between the existence state of the Cu species and the catalytic properties of the ethynylation reaction were studied. The results show that the Cu species in the CuO/SiO2 (IM), prepared using the impregnation method, are in the form of bulk CuO, with large particles and no interactions with the support. The bulk CuO species are transformed into Cu+ with a low exposure surface at the beginning of the reaction, which is easily lost. Thus, this approach shows the lowest initial activity and poor cycle stability. A high dispersion of CuO and copper phyllosilicate exists in CuO/SiO2 (DP). The former makes the catalyst have the best initial activity, while the latter slows release, maintaining the stability of the catalyst. There is mainly copper phyllosilicate in CuO/SiO2 (AE), which is slowly transformed into a highly dispersed and stable Cu+ center in the in situ reaction. Although the initial activity of the catalyst is not optimal, it has the optimal service stability.
As more technologies have been developed to produce formaldehyde and acetylene from biomass, the condensation–addition reaction between formaldehyde and acetylene provides a green and atom-economic method to synthesize 1,4-butynediol (BD). It is important to design and construct a new efficient copper-based catalyst for formaldehyde ethynylation with multi-center synergy to improve the reaction efficiency. In this work, a CuO–xZnO composite catalyst with an interface structure was constructed. Compared with a CuO-based catalyst, the yield of BD was increased from 19.07 to 70.9% by introducing an appropriate amount of ZnO, and the reaction activation energy decreased from 28.94 to 16.35 kJ/mol, which improved the catalytic reaction efficiency. The results showed that ZnO in the CuO–xZnO catalyst dispersed the active Cu species and also promoted the conversion of CuO to copper acetylide by electron transfer in the interface structure. Moreover, Zn2+ in ZnO acted as a Lewis acid and adsorbed the carbonyl oxygen of formaldehyde, causing the carbonyl electrons to flow to Zn2+, which enhanced the electropositivity of C+ in the formaldehyde molecule. This resulted in a nucleophilic addition reaction between formaldehyde activated by ZnO and acetylene activated by copper acetylide at the interface, which efficiently generated the target product BD.
The highly effective catalytic synthesis of 1,4-butynediol (BD) from the Reppe process is a fascinating technology in modern chemical industry. In this work, we reported the effects of the existential states of Mg species in the CuO/silica-magnesia catalysts for the ethynylation of formaldehyde in a simulative slurry reactor. The physichemical properties of the supports and the corresponding catalysts were extensively characterized by various techniques. The experimental results indicated that the introduced Mg species in the form of MgO particles, MgO microcrystals, or Si-O-Mg structures effectively resulted in an abundance of medium-strong basic sites, which can synergize with the active Cu+ species, facilitate the activation of acetylene, and improve the ethynylation activity. For the CuO/MgO-SiO2 catalyst, the existence of Si-O-Mg structures strengthened the Cu–support interaction, which were beneficial to improving the dispersion and the valence stability of the active Cu+ species. The highly dispersed Cu+ species, its stable valence state, and the abundant medium-strong basic sites enhanced the synergistic effect significantly, leading to the superior activity and stability of CuO/MgO-SiO2. The insights into the role of the existential states of Mg species and the revelation of the synergistic effect between active Cu+ species and basic sites can provide theoretic guidance for future rational design of catalysts for the ethynylation reation.
Composite nanomaterials have been widely used in catalysis because of their attractive properties and various functions. Among them, the preparation of composite nanomaterials by redox has attracted much attention. In this work, pure Cu2O was prepared by liquid phase reduction with Cu(NO3)2 as the copper source, NaOH as a precipitator, and sodium ascorbate as the reductant. With Fe(NO3)3 as the iron source and solid-state phase reaction between Fe3+ and Cu2O, CuxO-FeyOz nanocatalysts with different Fe/Cu ratios were prepared. The effects of the Fe/Cu ratio on the structure of CuxO-FeyOz nanocatalysts were studied by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet confocal Raman (Raman), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS, XAES), and hydrogen temperature-programmed reduction (H2-TPR). Furthermore, the structure–activity relationship between the structure of CuxO-FeyOz nanocatalysts and the performance of formaldehyde ethynylation was discussed. The results show that Fe3+ deposited preferentially on the edges and corners of the Cu2O surface, and a redox reaction between Fe3+ and Cu+ occurred, forming CuxO-FeyOz nanoparticles containing Cu+, Cu2+, Fe2+, and Fe3+. With the increase of the Fe/Cu ratio, the content of CuxO-FeyOz increased. When the Fe/Cu ratio reached 0.8, a core–shell structure with Cu2O inside and a CuxO-FeyOz coating on the outside was formed. Because of the large physical surface area and the heterogeneous structure formed by CuxO-FeyOz, the formation of nonactive Cu metal is inhibited, and the most active species of Cu+ are exposed on the surface, showing the best formaldehyde ethynylation activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.