We consider the optimal portfolio problem of a power investor who wishes to allocate her wealth between several credit default swaps (CDSs) and a money market account. We model contagion risk among the reference entities in the portfolio using a reduced-form Markovian model with interacting default intensities. Using the dynamic programming principle, we establish a lattice dependence structure between the Hamilton-Jacobi-Bellman equations associated with the default states of the portfolio. We show existence and uniqueness of a classical solution to each equation and characterize them in terms of solutions to inhomogeneous Bernoulli type ordinary differential equations. We provide a precise characterization for the directionality of the CDS investment strategy and perform a numerical analysis to assess the impact of default contagion. We find that the increased intensity triggered by default of a very risky entity strongly impacts size and directionality of the investor strategy. Such findings outline the key role played by default contagion when investing in portfolios subject to multiple sources of default risk.
We consider a portfolio optimization problem in a defaultable market. The investor can dynamically choose a consumption rate and allocate his/her wealth among three financial securities: a defaultable perpetual bond, a default-free risky asset, and a money market account. Both the default risk premium and the default intensity of the defaultable bond are assumed to rely on some stochastic factor which is described by a diffusion process. The goal is to maximize the infinite-horizon expected discounted log utility of consumption. We apply the dynamic programming principle to deduce a HamiltonJacobi-Bellman equation. Then an optimal Markov control policy and the optimal value function is explicitly presented in a verification theorem. Finally, a numerical analysis is presented for illustration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.