Leaf photosynthesis of crops acclimates to elevated CO and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free-air CO enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0-2.0°C). Parameters of the C photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (g ) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO , elevated temperature, and their combination. The combination of elevated CO and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The g model significantly underestimated g under the combination of elevated CO and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled g -FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of g hardly improved prediction of leaf photosynthesis under the four combinations of CO and temperature. Therefore, the typical procedure that crop models using the FvCB and g models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change.
Crops show considerable capacity to adjust their photosynthetic characteristics to seasonal changes in temperature. However, how photosynthesis acclimates to changes in seasonal temperature under future climate conditions has not been revealed. We measured leaf photosynthesis (An) of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) grown under four combinations of two levels of CO2 (ambient and enriched up to 500 µmol/mol) and two levels of canopy temperature (ambient and increased by 1.5–2.0°C) in temperature by free‐air CO2 enrichment (T‐FACE) systems. Parameters of a biochemical C3‐photosynthesis model and of a stomatal conductance (gs) model were estimated for the four conditions and for several crop stages. Some biochemical parameters related to electron transport and most gs parameters showed acclimation to seasonal growth temperature in both crops. The acclimation response did not differ much between wheat and rice, nor among the four treatments of the T‐FACE systems, when the difference in the seasonal growth temperature was accounted for. The relationships between biochemical parameters and leaf nitrogen content were consistent across leaf ranks, developmental stages, and treatment conditions. The acclimation had a strong impact on gs model parameters: when parameter values of a particular stage were used, the model failed to correctly estimate gs values of other stages. Further analysis using the coupled gs–biochemical photosynthesis model showed that ignoring the acclimation effect did not result in critical errors in estimating leaf photosynthesis under future climate, as long as parameter values were measured or derived from data obtained before flowering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.