Potassium tungsten oxide nanofibers were successfully synthesized via a facile hydrothermal reaction route in the presence of sulfate. After reduction under a reductive atmosphere of H(2)(5 vol %)/N(2), the potassium tungsten oxide transformed to potassium tungsten bronze. Because of the lack of free electrons, the potassium tungsten oxide (K(x)WO(3+x/2)) showed no NIR shielding performance; however, the potassium tungsten bronze (K(x)WO(3)) showed promising optical characteristics such as high transmittance for visible light, as well as high shielding performance for near-infrared lights, indicating its potential application as a solar filter. Meanwhile, the potassium tungsten bronze (K(x)WO(3)) showed strong absorption of near-infrared light and instantaneous conversion of photoenergy to heat.
Abstract:In this paper, unique surface sensing property and enhanced sensitivity in microring resonator biosensors based on subwavelength grating (SWG) waveguides are studied and demonstrated. The SWG structure consists of periodic silicon pillars in the propagation direction with a subwavelength period. Effective sensing region in the SWG microring resonator includes not only the top and side of the waveguide, but also the space between the silicon pillars on the light propagation path. It leads to greatly increased sensitivity and a unique surface sensing property in contrast to common evanescent wave sensors: the surface sensitivity remains constantly high as the surface layer thickness grows. Microring resonator biosensors based on both SWG waveguides and conventional strip waveguides were compared side by side in surface sensing experiment and the enhanced surface sensing capability in SWG based microring resonator biosensors was demonstrated. M. C. C. Estevez, M. Alvarez, and L. M. M. Lechuga, "Integrated optical devices for lab-on-a-chip biosensing applications," Laser Photon. Rev. 6, 463-487 (2012 J. Vörös, "The density and refractive index of adsorbing protein layers.," Biophys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.