Chemical investigation of one fungal strain P. chlamydosporia YMF 1.00613 isolated from root knots of tobacco infected by Meloidogyne incognita led to the isolation and identification of four aurovertin-type metabolites, which include a new compound, aurovertin I (A1), and three known metabolites, aurovertins E, F and D (A2-A4). Their structures were established by spectroscopic studies such as 1D- and 2D-NMR and MS analysis. Aurovertin I (A1) is the first natural product with an aurovertin skeleton with one less carbon. Compounds A3 and A4 showed the toxicity to the worms of the free-living nematode Panagrellus redivevus with the LC(50) values 88.6 and 41.7 microg/mL at 48 h, respectively. All four aurovertins did not show obvious inhibitory effects on egg hatch of root knot nematode Meloidogyne incognita. The results suggested that the aurovertin-type metabolites produced by P. chlamydosporia might be one of the pathogenic factors involved in the suppression of nematodes.
Soybean [Glycine max (L.) Merr.] seed, which contains high levels of oil and protein, is one of China's most important native crops. The aim of this study was to investigate how regional and environmental factors affect the compositions of protein, amino acids, oil, and fatty acids. A total of 127 soybean cultivars from four main regions of China were analyzed. The levels of total protein and most of amino acids showed a trend of increasing from Northern to Southern China, while the levels of total oil, stearic acid, linolenic acid, and proline showed a trend of decreasing. The variation of protein, oil, palmitic acid, and linoleic acid content of soybean grown in the four regions was low, while variation of other constituents remained high. Most amino acids contents were positively correlated with protein content. The total oil content showed a negative correlation with protein content. The content of linolenic acid was positively correlated with the content of palmitic acid and stearic acid but negatively correlated with the oleic acid content. The southern regions have the potential for high‐protein soybean production, while the northern regions of China have the potential for high‐oil soybean production.
Autophagy (self-eating), a conserved pathway in eukaryotes, which is designed to handle cytoplasmic material in bulk and plays an important role in the remobilization of nutrient, such as nitrogen (N) under suboptimal nutrient conditions. Here, we identified a core component of an autophagy gene in rice ( Oryza sativa ), OsATG8a , with increased expression levels under N starvation conditions. Overexpression of OsATG8a significantly enhanced the level of autophagy and the number of effective tillers in the transgenic rice. In addition, the transgenic lines accumulated more N in grains than in the dry remains and the yield was significantly increased under normal N conditions. Further N allocation studies revealed that the nitrogen uptake efficiency (NUpE) and nitrogen use efficiency (NUE) significantly increased. Otherwise, under suboptimal N conditions, overexpression of OsATG8a did not seem to have any effect on yield and NUE, but NUpE was still improved significantly. Based on our findings, we consider OsATG8a to be a great candidate gene to increase NUE and yield.
We tested for a tradeoff across species between plant maximum photosynthetic rate and the ability to maintain photosynthesis under adverse conditions in the unfavorable season. Such a trade-off would be consistent with the observed trade-off between maximum speed and endurance in athletes and some animals that has been explained by cost-benefit theory. This trend would have importance for the general understanding of leaf design, and would simplify models of annual leaf carbon relations. We tested for such a trade-off using a database analysis across vascular plants and using an experimental approach for 29 cycad species, representing an ancient plant lineage with diversified evergreen leaves. In both tests, a higher photosynthetic rate per mass or per area in the favorable season was associated with a stronger absolute or percent decline in the unfavorable season. We resolved a possible mechanism based on biomechanics and nitrogen allocation; cycads with high leaf toughness (leaf mass per area) and higher investment in leaf construction than in physiological function (C/N ratio) tended to have lower warm season photosynthesis but less depression in the cool season. We propose that this trade-off, consistent with cost-benefit theory, represents a significant physio-phenological constraint on the diversity and seasonal dynamics of photosynthetic rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.