Targeted inhibition of the molecular chaperone Hsp90 results in the simultaneous blockade of multiple oncogenic signaling pathways and has, thus, emerged as an attractive strategy for the development of novel cancer therapeutics. Ganetespib (formerly known as STA-9090) is a unique resorcinolic triazolone inhibitor of Hsp90 that is currently in clinical trials for a number of human cancers. In the present study, we showed that ganetespib exhibits potent in vitro cytotoxicity in a range of solid and hematologic tumor cell lines, including those that express mutated kinases that confer resistance to small-molecule tyrosine kinase inhibitors. Ganetespib treatment rapidly induced the degradation of known Hsp90 client proteins, displayed superior potency to the ansamycin inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), and exhibited sustained activity even with short exposure times. In vivo, ganetespib showed potent antitumor efficacy in solid and hematologic xenograft models of oncogene addiction, as evidenced by significant growth inhibition and/or regressions. Notably, evaluation of the microregional activity of ganetespib in tumor xenografts showed that ganetespib was efficiently distributed throughout tumor tissue, including hypoxic regions >150 mm from the microvasculature, to inhibit proliferation and induce apoptosis. Importantly, ganetespib showed no evidence of cardiac or liver toxicity. Taken together, this preclinical activity profile indicates that ganetespib may have broad application for a variety of human malignancies, and with select mechanistic and safety advantages over other first-and second-generation Hsp90 inhibitors. Mol Cancer Ther; 11(2); 475-84. Ó2011 AACR.
Blockade of P-selectin/PSGL-1 interactions holds significant potential for treatment of disorders of innate immunity, thrombosis, and cancer. Current inhibitors remain limited due to low binding affinity or by the recognized disadvantages inherent to chronic administration of antibody therapeutics. Here we report an efficient approach for generating glycosulfopeptide mimics of N-terminal PSGL-1 through development of a stereoselective route for multi-gram scale synthesis of the C2 O-glycan building block and replacement of hydrolytically labile tyrosine sulfates with isosteric sulfonate analogs. Library screening afforded a compound of exceptional stability, GSnP-6, that binds to human P-selectin with nanomolar affinity (Kd ~ 22 nM). Molecular dynamics simulation defines the origin of this affinity in terms of a number of critical structural contributions. GSnP-6 potently blocks P-selectin/PSGL-1 interactions in vitro and in vivo and represents a promising candidate for the treatment of diseases driven by acute and chronic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.