Objective The inner mucus layer in mouse colon normally separates bacteria from the epithelium. Do humans have a similar inner mucus layer and are defects in this mucus layer a common denominator for spontaneous colitis in mice models and ulcerative colitis? Methods and Results The colon mucus layer of mice deficient in the Muc2 mucin, Core 1 O-glycans, Tlr5, IL10 and Slc9a3 (Nhe3) together with dextran sulfate (DSS) treated mice was immunostained for Muc2 and the bacterial localization in the mucus was analyzed. All murine colitis models revealed bacteria in contact with the epithelium. Additional analysis of the less inflamed IL10−/− mice revealed a thicker mucus layer than WT, but the properties were different as the inner mucus layer could be penetrated both by bacteria in vivo and by fluorescent beads the size of bacteria ex vivo. Clear separation between bacteria or fluorescent beads and the epithelium mediated by the inner mucus layer was also evident in normal human sigmoid colon biopsies. In contrast, mucus on colon biopsies of ulcerative colitis (UC) patients with acute inflammation had a highly penetrable mucus. Most UC patients in remission had similar to controls an impenetrable mucus layer. Conclusions Normal human sigmoid colon has an inner mucus layer impenetrable to bacteria. The colon mucus in animal models that spontaneously develop colitis and in UC patients with active disease allows bacteria to penetrate and reach the epithelium. Thus colon mucus properties can be modulated and suggest a novel model of UC pathophysiology.
The mechanisms involved in the pathogenesis of epilepsy, a chronic neurological disorder that affects approximately 1 percent of the world population, are not well understood [1][2][3] . Using a mouse model of epilepsy, we show that seizures induce elevated expression of vascular cell adhesion molecules and enhanced leukocyte rolling and arrest in brain vessels mediated by the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1) and leukocyte integrins α4β1 and αLβ2. Inhibition of leukocytevascular interactions either with blocking antibodies, or in mice genetically deficient in functional PSGL-1, dramatically reduced seizures. Treatment with blocking antibodies following acute seizures prevented the development of epilepsy. Neutrophil depletion also inhibited acute seizure induction and chronic spontaneous recurrent seizures. Blood-brain barrier (BBB) leakage, which is known to enhance neuronal excitability, was induced by acute seizure activity but was prevented by blockade of leukocyte-vascular adhesion, suggesting a pathogenetic link between leukocyte-vascular interactions, BBB damage and seizure generation. Consistent with potential leukocyte involvement in the human, leukocytes were more abundant in brains of epileptics than of controls. Our results Correspondence should be addressed to: P.F.F (E-mail: paolo.fabene@univr.it) or G.C. (E-mail: gabriela.constantin@univr.it). Author contribution G.N.M., D.B., A.C., L.Z., F.S. performed epilepsy experiments, telemetry and open field behavior. M.M., B.R., L.O., S.B., S.A., performed intravital microscopy, in vivo staining for adhesion molecules, adhesion assays and contributed to the obtainment of behavioral data. A.O. provided the human samples. F.M., A.C. and F.O. performed immunohistochemistry on human and animal samples. P.M., E.N. and A.S provided MRI expertise. J.W.H., L.X., J.B.L., R.P.M provided vital reagents and mice. E.C.B contributed experimental suggestions, reagents and assistance with writing. P.F.F and G.C. designed the study, analyzed the data and wrote the paper NIH Public Access suggest leukocyte-endothelial interaction as a potential target for the prevention and treatment of epilepsy.Experimental data from animal models as well as human evidence indicate that seizures can lead to neuronal damage and cognitive impairement 2, 3 . However, the molecular mechanisms leading to seizures and epilepsy are not well understood. Recent data suggests that inflammation may play a role in the pathogenesis of epilepsy 4, 5 . For instance, elevation in inflammatory cytokines are seen in the central nervous system (CNS) and plasma in experimental models of seizures and in clinical cases of epilepsy 4, 5 . Moreover, CNS inflammation is associated with breakdown in the blood-brain barrier (BBB), and BBB leakage has been implicated both in the induction of seizures and in the progression to epilepsy 6-9 . Leukocyte recruitment is a hallmark of and a point of therapeutic intervention in tissue inflammation 10,11 , but a role for leukocyte-endothelia...
In lymph nodes, fibroblastic reticular cells (FRCs) form a collagen-based reticular network that supports migratory dendritic cells (DCs) and T cells and transports lymph. A hallmark of FRCs is their propensity to contract collagen, yet this function is poorly understood. Here, we demonstrate that podoplanin (PDPN) regulated actomyosin contractility in FRCs. Under resting conditions, when FRCs are unlikely to encounter mature DCs expressing the PDPN receptor, CLEC-2, PDPN endowed FRCs with contractile function and exerted tension within the reticulum. Upon inflammation, CLEC-2 on mature DCs potently attenuated PDPN-mediated contractility, resulting in FRC relaxation and reduced tissue stiffness. Disrupting PDPN function altered the homeostasis and spacing of FRCs and T cells, resulting in an expanded reticular network and enhanced immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.