The evolution of L-DOPA 4,5-dioxygenase activity, encoded by the gene DODA, was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed that L-DOPA 4,5-dioxygenase activity evolved via a single Caryophyllales-specific neofunctionalisation event within the DODA gene lineage. However, this neofunctionalisation event has not been confirmed and the DODA gene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear.To address this, we functionally characterised 23 distinct DODA proteins for L-DOPA 4,5dioxygenase activity, from four betalain-pigmented and five anthocyanin-pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updated DODA phylogeny, we then explored the evolution of L-DOPA 4,5-dioxygenase activity.We find that low L-DOPA 4,5-dioxygenase activity is distributed across the DODA gene lineage. In this context, repeated gene duplication events within the DODA gene lineage give rise to polyphyletic occurrences of elevated L-DOPA 4,5-dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro-synteny.In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevated L-DOPA 4,5-dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales.
A solution culture experiment was designed to determine whether Si can alleviate Sb toxicity in rice. The design involved a rice mutant with low Si accumulation and wild-type rice with normal Si accumulation. The effects of Si on rice Sb stress in the presence or absence of P were investigated. P significantly increased the shoot biomass in both wild-type and mutant rice, whereas Si increased the biomass only in the wild-type rice. No biomass change was detected in both rice type when 10 or 30 μmol·L −1 Sb was added to the solution. Compared with the no P control, in both rice types, the application of 0.7 mmol·L −1 P significantly increased the P content, whereas Si significantly influenced the uptake and accumulation of P and Sb. In different P and Sb treatments, 1.0 mmol·L −1 Si led to 6.9-58.2% and 21.4-62.5% decreased Sb content in the shoots of wild-type and mutant rice, respectively. Si addition also significantly impacted the distribution coefficient of Sb between the shoots and seeds of both rice types. These results suggest that the application of Si in rice can promote growth, reduce Sb accumulation and decrease Sb movement to shoot and seeds, which may lead to Sb pollution control under rice field conditions.
To understand the morphological and structural characteristics of root nodules in Podocarpus macrophyllus and their development, this study prepared P. macrophyllus root nodule samples at the young, mature and senescent stages. Optical microscopy and transmission electron microscopy (TEM) revealed that new nodules can be formed on roots and senescent nodules; new nodules formed on the roots are nearly spherical and have an internal structure similar to finite nodules; new nodules on senescent nodules are formed by extension and differentiation of the vascular cylinder of the original nodules; and these new nodules are nested at the base of the original nodules, which create growth space for new nodules by dissociating the cortical tissue; clusters of nodules are formed after extensive accumulation, and the growth pattern is similar to that of infinite nodules; the symbiotic bacteria of P. macrophyllus root nodules mainly invade from the epidermal intercellular space of the roots and migrate along the intercellular space of the nodule cortex; infected nodule cortex cells have a welldeveloped inner membrane system and enlarged and loose nuclei; and unique Frankia vesicles, and rhizobia cysts, and bacteriophages can all develop. Compared with common leguminous and nonleguminous plant nodules, P. macrophyllus root nodules are more complex in morphology, structure and composition. From the perspective of plant system evolution, the nodules in P. macrophyllus most likely represent two evolutionary patterns inlcuding the Rhizobium nodules in leguminous angiosperms and Frankia nodules in nonleguminous angiosperms. The conclusion of this study provides a theoretical basis for the developmental biology of P. macrophyllus root nodules and the evolutionary pattern of plant symbionts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.