More than a decade after the first theoretical and experimental studies of the spin Hall conductivity (SHC) of Pt, both its dominant origin and amplitude remain in dispute. We report the experimental determination of the rapid variation of the intrinsic SHC of Pt with the carrier lifetime (τ) in the dirty-metal regime by incorporating finely dispersed MgO intersite impurities into the Pt, while maintaining its essential band structure. This conclusively validates the theoretical prediction that the SHC in Pt in the dirty-metal regime should be dominated by the intrinsic contribution, and should decrease rapidly with shortening τ. When interfacial spin backflow is taken into account, the intrinsic SHC of Pt in the clean limit is at least 1.6 × 106 (ℏ/2e) ohm−1 m−1, more than 3.5 times greater than the available theoretical predictions. Our work also establishes a compelling spin Hall metal Pt0.6(MgO)0.4 with an internal giant spin Hall ratio of 0.73.
Increasing dampinglike spin-orbit torque (SOT) is both of fundamental importance for enabling new research into spintronics phenomena and also technologically urgent for advancing low-power spin-torque memory, logic, and oscillator devices. Here, we demonstrate that enhancing interfacial scattering by inserting ultra-thin layers within a spin Hall metals with intrinsic or side-jump mechanisms can significantly enhance the spin Hall ratio. The dampinglike SOT was enhanced by a factor of 2 via sub-monolayer Hf insertion, as evidenced by both harmonic response measurements and currentinduced switching of in-plane magnetized magnetic memory devices with the record low critical switching current of ~73 μA (switching current density ≈ 3.6×10 6 A/cm 2 ). This work demonstrates a very effective strategy for maximizing dampinglike SOT for low-power spin-torque devices.
We experimentally investigate the origin of the two-magnon scattering (TMS) in heavy-metal (HM)/ferromagnet (FM)/oxide heterostructures (FM = Co, Ni 81 Fe 19 , or Fe 60 Co 20 B 20 ) by varying the materials located above and below the FM layers. We show that strong TMS in HM/FM/oxide systems arises primarily at the HM/FM interface and increases with the strength of interfacial spin-orbit coupling and magnetic roughness at this interface. TMS at the FM/oxide interface is relatively weak, even in systems where spin-orbit coupling at this interface generates strong interfacial magnetic anisotropy. We also suggest that the spin-current-induced excitation of non-uniform short-wavelength magnon at the HM/FM interface may function as a mechanism of spin memory loss for the spin-orbit torque exerted on the uniform mode.
Spin backflow and spin-memory loss have been well established to considerably lower the interfacial spin transmissivity of metallic magnetic interfaces and thus the energy efficiency of spin-orbit torque technologies. Here we report that spin backflow and spin-memory loss at Pt-based heavy metal/ferromagnet interfaces can be effectively eliminated by inserting an insulating paramagnetic NiO layer of optimum thickness. The latter enables the thermal magnon-mediated essentially unity spin-current transmission at room temperature due to considerably enhanced effective spin-mixing conductance of the interface. As a result, we obtain dampinglike spin-orbit torque efficiency per unit current density of up to 0.8 as detected by the standard technology ferromagnet FeCoB and others, which reaches the expected upper-limit spin Hall ratio of Pt. We establish that Pt/NiO and Pt-Hf/NiO are two energy-efficient, integration-friendly, and high-endurance spin-current generators that provide >100 times greater energy efficiency than sputter-deposited topological insulators BiSb and BiSe. Our finding will benefit spin-orbitronic research and advance spin-torque technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.