Thermal design and the choice of turbulence models are crucial for motors. In this project, the geometrical model of the vertical shielding induction motor for a small nuclear main pump was established by SolidWorks software and the finite volume method was adopted to investigate the temperature of the motor, especially the temperatures of bearings lubricated water. To make the numerical simulation of flow and heat transfer in the rotating clearance of the shielding induction motor more accurate, the effects of four types of different two equation turbulence models on the temperature field of the shielding induction motor were studied. The results showed that different choices of turbulence models had little effect on the temperature of the winding insulation but influenced the temperature of the lower guide bearing lubricating water and the secondary cooling water outlet. The SST k-ω model showed the lowest relative error result of the temperature of the winding insulation and the bearing lubricating water in the primary loop system of the shielding induction motor. The temperature of the clearance water, the spiral tube water and the spiral groove water increased approximately linearly along the axial direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.