BackgroundBrain metastasis (BM) is one of the principal causes of mortality for lung cancer patients. While the molecular events that govern BM of lung cancer remain frustrating cloudy.MethodsThe miRNA expression profiles are checked in the paired human BM and primary lung cancer tissues. The effect of miR-143-3p on BM of lung cancer cells and its related mechanisms are investigated.ResultsmiR-143-3p is upregulated in the paired BM tissues as compared with that in primary cancer tissues. It can increase the invasion capability of in vitro blood brain barrier (BBB) model and angiogenesis of lung cancer by targeting the three binding sites of 3’UTR of vasohibin-1 (VASH1) to inhibit its expression. Mechanistically, VASH1 can increase the ubiquitylation of VEGFA to trigger the proteasome mediated degradation, further, it can endow the tubulin depolymerization through detyrosination to increase the cell motility. m6A methyltransferase Mettl3 can increase the splicing of precursor miR-143-3p to facilitate its biogenesis. Moreover, miR-143-3p/VASH1 axis acts as adverse prognosis factors for in vivo progression and overall survival (OS) rate of lung cancer.ConclusionsOur work implicates a causal role of the miR-143-3p/VASH1 axis in BM of lung cancers and suggests their critical roles in lung cancer pathogenesis.
Severe interfacial side reactions of polymer electrolyte with LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) cathode and Li metal anode restrict the cycling performance of solid-state NCM811/ Li batteries.H erein, we propose ac hemically stable ceramicpolymer-anchored solvent composite electrolyte with high ionic conductivity of 6.0 10 À4 Scm À1 ,w hiche nables the solid-state NCM811/Li batteries to cycle 1500 times.T he Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 nanowires (LNs) can tightly anchor the essential N, N-dimethylformamide (DMF) in poly(vinylidene fluoride) (PVDF), greatly enhancing its electrochemical stability and suppressing the side reactions.W ei dentify the ceramic-polymer-liquid multiple ion transport mechanism of the LNs-PVDF-DMF composite electrolyte by tracking the 6 Li and 7 Li substitution behavior via solid-state NMR. The stable interface chemistry and efficient ion transport of LNs-PVDF-DMF contribute to superior performances of the solid-state batteries at wide temperature range of À20-60 8 8C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.