The performance and hydrodynamic behavior of centrifugal pumps when handling two-phase liquid-liquid flow and emulsion remain relatively unexplored, although they are of fundamental importance in optimizing the operating conditions of these pumps. Hence, this study aims at investigating the performance degradation of a centrifugal pump under emulsion flow by combined means of analytical and computational fluid dynamic (CFD) models. The analytical approach is based on internal energy loss equations while the CFD approach models the emulsion as a continuous and homogeneous single-phase fluid exhibiting shear thinning behavior. The results give a good insight into the performance degradation of such a system, especially at the best efficiency point (BEP).
Although emulsion pumping is a subject of growing interest, a detailed analysis of the fluid dynamic phenomena occurring inside these machines is still lacking. Several computational investigations have been conducted to study centrifugal pumps carrying emulsion by analyzing their overall performance, but no studies involved the rheological behavior of such fluids. The purpose of this study is to perform a computational analysis of the performance and flow characteristics of a centrifugal pump with volute handling emulsions and oil–water mixtures at different water cuts modeled as a shear-thinning non-Newtonian fluid. The studied pump consists of a five-bladed backward curved impeller and a volute and has a specific speed of 32 (metric units). The rheological properties of the mixtures studied were measured experimentally under a shear rate ranging from 1 s−1 to 3000 s−1 and were fitted to conventional Cross and Carreau effective viscosity models. Numerical results showed the flow topology in the pump is directly related to the viscosity plateau of the pseudoplastic behavior of emulsions. The viscosity plateau governs pump performance by influencing the loss mechanisms that occur within the pump. The larger the ν∞, the less recirculation loss the fluid experiences, and conversely, the smaller the value of ν0, the less friction loss the fluid experiences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.