a b s t r a c tThe present work describes a new methodology for contact free impedance of a solution in a polymer microchip taking into account the role played by the surrounding polymer on the impedance accuracy. Measurements were carried out using a photoablated polyethylene terephthalate (PET) microchannel above two embedded microband electrodes. The impedance diagrams exhibit a loop from high frequencies to medium frequencies (1 MHz-100 Hz) and a capacitive behavior at low frequencies (100-1 Hz). The impedance diagrams were corrected by eliminating from the global microchip response the contribution of the impedance of the PET layer between the two microband electrodes. This operation enables a clear observation of the impedance in the microchannel solution, including the bulk solution contribution and the interfacial capacitance related to the surface roughness of the photoablated microchannel. Models for the impedance of solutions of varying conductivity showed that the capacitance of the polymer-solution interface can be modeled by a constant phase element (CPE) with an exponent of 0.5. The loop diameter was found to be proportional to the microchannel resistivity, allowing a cell constant around 4.93 × 10 5 m −1 in contactless microelectrodes configuration.
This work is devoted to the understanding of the dielectric impedance response of a semi-crystalline polyethylene terephthalate (PET) membrane sandwiched between two disk electrodes under alternate voltage excitation in the frequency range between 1 MHz and 25 mHz. Experimental results obtained for various PET thicknesses (36, 50 and 100 μm) highlighted the influence of the contact resistance at the electrode/polymer interface. For a better understanding of the PET/electrode interface behaviour, the experiments were compared with simulations performed for three different descriptions: the direct use of electrical equivalent circuits, an analytical model accounting for a power-law distribution of resistivity, and a numerical model (finite element simulations of the whole cell). The results highlight that the resistivity distribution obtained using the power-law model provided an appropriate description of the system in the frequency range investigated while the use of the CPE model is only consistent for low-frequencies (below 1 Hz).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.