Rising concentrations of atmospheric carbon dioxide are acidifying the world's oceans. Surface seawater pH is 0.1 units lower than pre-industrial values and is predicted to decrease by up to 0.4 units by the end of the century. This change in pH may result in changes in the physiology of ocean organisms, in particular, organisms that build their skeletons/shells from calcium carbonate, such as corals. This physiological change may also affect other members of the coral holobiont, for example, the microbial communities associated with the coral, which in turn may affect the coral physiology and health. In the present study, we examined changes in bacterial communities in the coral mucus, tissue and skeleton following exposure of the coral Acropora eurystoma to two different pH conditions: 7.3 and 8.2 (ambient seawater). The microbial community was different at the two pH values, as determined by denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis. Further analysis of the community in the corals maintained at the lower pH revealed an increase in bacteria associated with diseased and stressed corals, such as Vibrionaceae and Alteromonadaceae. In addition, an increase in the number of potential antibacterial activity was recorded among the bacteria isolated from the coral maintained at pH 7.3. Taken together, our findings highlight the impact that changes in the pH may have on the coral-associated bacterial community and their potential contribution to the coral host.
Broomrapes (Phelipanche/Orobanche spp.) are holoparasitic plants that subsist on the roots of a variety of agricultural crops, establishing direct connections with the host vascular system. This connection allows for the exchange of various substances and a possible exchange of endophytic microorganisms that inhabit the internal tissues of both plants. To shed some light on bacterial interactions occurring between the parasitic Phelipanche aegyptiaca and its host tomato, we characterized the endophytic composition in the parasite during the parasitization process and ascertained if these changes were accompanied by changes to endophytes in the host root. Endophyte communities of the parasitic weed were significantly different from that of the non-parasitized tomato root but no significant differences were observed between the parasite and its host after parasitization, suggesting the occurrence of bacterial exchange between these two plants. Moreover, the P. aegyptiaca endophytic community composition showed a clear shift from gram negative to gram-positive bacteria at different developmental stages of the parasite life cycle. To examine possible functions of the endophytic bacteria in both the host and the parasite plants, a number of unique bacterial candidates were isolated and characterized. Results showed that a Pseudomonas strain PhelS10, originating from the tomato roots, suppressed approximately 80% of P. aegyptiaca seed germination and significantly reduced P. aegyptiaca parasitism. The information gleaned in the present study regarding the endophytic microbial communities in this unique ecological system of two plants connected by their vascular system, highlights the potential of exploiting alternative environmentally friendly approaches for parasitic weed control.
Aim: To study the effects of incubation conditions on the microbial community structure and activity of a TBBPA‐debrominating enrichment culture composed of bacterial and archaeal species. Methods and Results: The effects of the methanogen inhibitor 2‐bromoethanesulfonate (BES), of the antibiotic ampicillin, of substrate (tetrabromobisphenol A, TBBPA) omission and availability of different electron donors on microbial community structure and activity were examined under anaerobic conditions. Debromination of TBBPA was blocked in the presence of ampicillin, while long‐term incubation with BES resulted in delayed debromination activity. The results suggest that the bacterial species responsible for the debromination of TBBPA, while archaeal species involved in electron donor metabolism. The enrichment culture lost its debromination activity after cultivation for 9 months without TBBPA, concomitantly with the disappearance of two DNA bands in a denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments corresponding to Pelobacter carbinolicus and Sphaerochaeta sp. TQ1 that were present in the original culture. When butyrate was used as an electron donor, TBBPA debromination activity was attenuated. When acetate was used as the electron donor, no debromination was observed and in addition, there was a decrease in the abundance of the mcrA gene. Conclusions: The results indicate that to maintain a high rate of TBBPA debromination activity, it is essential to preserve the microbial community structure (bacterial and archaeal members) of this culture and supply an electron donor that produces high amounts of hydrogen when fermented. Significance and Impact of the Study: The study provides important information for the management of cultures to be used in bioremediation of TBBPA contaminated sites.
The idea of using constructed wetlands for the treatment and improving of wastewater emerged in the second half of the last century. Despite relatively wide use of this environmentally friendly technology, relatively little is known about the microbial populations involved in biotransformation and removal of contaminants in this system. The aim of the current study was to investigate the assembly and function of microbial populations in vertical-flow constructed wetland microcosms designed to improve the quality of wastewater after activated sludge treatment. Also, the performance of 3-year-old wetland ponds was investigated. Even though the quality of the influent water was relatively high, improvement in water parameters such as coliform level, ammonia concentration, BOD, and TSS was observed. The performance of the wetland ponds was comparable to that of the microcosms. The microbial community composition of the biofilm formed on the surface of gravel particles in vegetated and plant-free microcosms was studied by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene fragments. Highly complex bacterial diversity was observed in the biofilm. Cluster analysis of DGGE patterns demonstrated that depth within the wetland microcosm has a stronger effect on microbial community composition of the biofilm formed on wetland matrix than vegetation. Measurements of fluorescein diacetate hydrolysis activity and nitrification potential revealed that hydrolytic activity was affected by both microcosm depth and vegetation presence, whereas nitrification potential was mostly influenced by depth. Resolving the bacterial assemblage of wetland biofilm, which often is considered a black box, will help to understand the interactions involved in the development of diverse and mature biofilm and its function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.