Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled a cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from across the mammalian brain using rigorously curated published data from pooled cell type microarray and single cell RNA-sequencing studies. We used these data to identify cell type-specific marker genes, discovering a substantial number of novel markers, many of which we validated using computational and experimental approaches. We further demonstrate that summarized expression of marker gene sets in bulk tissue data can be used to estimate the relative cell type abundance across samples. To facilitate use of this expanding resource, we provide a user-friendly web interface at Neuroexpresso.org.Significance StatementCell type markers are powerful tools in the study of the nervous system that help reveal properties of cell types and acquire additional information from large scale expression experiments. Despite their usefulness in the field, known marker genes for brain cell types are few in number. We present NeuroExpresso, a database of brain cell type specific gene expression profiles, and demonstrate the use of marker genes for acquiring cell type specific information from whole tissue expression. The database will prove itself as a useful resource for researchers aiming to reveal novel properties of the cell types and aid both laboratory and computational scientists to unravel the cell type specific components of brain disorders.
Concern about the reproducibility and reliability of biomedical research has been rising. An understudied issue is the prevalence of sample mislabeling, one impact of which would be invalid comparisons. We studied this issue in a corpus of human transcriptomics studies by comparing the provided annotations of sex to the expression levels of sex-specific genes. We identified apparent mislabeled samples in 46% of the datasets studied, yielding a 99% confidence lower-bound estimate for all studies of 33%. In a separate analysis of a set of datasets concerning a single cohort of subjects, 2/4 had mislabeled samples, indicating laboratory mix-ups rather than data recording errors. While the number of mixed-up samples per study was generally small, because our method can only identify a subset of potential mix-ups, our estimate is conservative for the breadth of the problem. Our findings emphasize the need for more stringent sample tracking, and that re-users of published data must be alert to the possibility of annotation and labelling errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.