We review and construct consistent in-sample specification and out-of-sample model selection tests on conditional distributions and predictive densities associated with continuous multifactor (possibly with jumps) and (non)linear discrete models of the short term interest rate. The results of our empirical analysis are used to carry out a "horserace" comparing discrete and continuous models across multiple sample periods, forecast horizons, and evaluation intervals. Our evaluation involves comparing models during two distinct historical periods, as well as across our entire weekly sample of Eurodollar deposit rates from 1982-2008. Interestingly, when our entire sample of data is used to estimate competing models, the "best" performer in terms of distributional "fit" as well as predictive density accuracy, both in-sample and out-of-sample, is the three factor Chen (CHEN: 1996) model examined by Andersen, Benzoni and Lund (2004). Just as interestingly, a logistic type discrete smooth transition autoregression (STAR) model is preferred to the "best" continuous model (i.e. the one factor Cox, Ingersoll, and Ross (CIR: 1985) model) when comparing predictive accuracy for the "Stable 1990s" period that we examine. Moreover, an analogous result holds for the "Post 1990s" period that we examine, where the STAR model is preferred to a two factor stochastic mean model. Thus, when the STAR model is parameterized using only data corresponding to a particular sub-sample, it outperforms the "best" continuous alternative during that period. However, when models are estimated using the entire dataset, the continuous CHEN model is preferred, regardless of the variety of model specification (selection) test that is carried out. Given that it is very difficult to ascertain the particular future regime that will ensue when constructing ex ante predictions, thus, the CHEN model is our overall "winning" model, regardless of sample period.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. We review and construct consistent in-sample specification and out-of-sample model selection tests on conditional distributions and predictive densities associated with continuous multifactor (possibly with jumps) and (non)linear discrete models of the short term interest rate. The results of our empirical analysis are used to carry out a "horserace" comparing discrete and continuous models across multiple sample periods, forecast horizons, and evaluation intervals. Our evaluation involves comparing models during two distinct historical periods, as well as across our entire weekly sample of Eurodollar deposit rates from 1982-2008. Interestingly, when our entire sample of data is used to estimate competing models, the "best" performer in terms of distributional "fit" as well as predictive density accuracy, both in-sample and out-of-sample, is the three factor Chen (CHEN: 1996) model examined by Andersen, Benzoni and Lund (2004). Just as interestingly, a logistic type discrete smooth transition autoregression (STAR) model is preferred to the "best" continuous model (i.e. the one factor Cox, Ingersoll, and Ross (CIR: 1985) model) when comparing predictive accuracy for the "Stable 1990s" period that we examine. Moreover, an analogous result holds for the "Post 1990s" period that we examine, where the STAR model is preferred to a two factor stochastic mean model. Thus, when the STAR model is parameterized using only data corresponding to a particular sub-sample, it outperforms the "best" continuous alternative during that period. However, when models are estimated using the entire dataset, the continuous CHEN model is preferred, regardless of the variety of model specification (selection) test that is carried out. Given that it is very difficult to ascertain the particular future regime that will ensue when constructing ex ante predictions, thus, the CHEN model is our overall "winning" model, regardless of sample period. Terms of use: Documents in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.