Automated parking is a typical function in a self-driving car. The trajectory planning module directly reflects the intelligence level of an automated parking system. Although many competitions have been launched for autonomous driving, most of them focused on on-road driving scenarios. However, driving on a structured road greatly differs from parking in an unstructured environment. In addition, previous competitions typically competed on the overall driving performance instead of the trajectory planning performance. A trajectory planning competition of automated parking (TPCAP) has been recently organized. This event competed on parking-oriented planners without involving other modules, such as localization, perception, or tracking control. This study reports the TPCAP benchmarks, achievements, experiences, and future perspectives.
Radar is widely employed in many applications, especially in autonomous driving. At present, radars are only designed as simple data collectors, and they are unable to meet new requirements for real-time and intelligent information processing as environmental complexity increases. It is inevitable that smart radar systems will need to be developed to deal with these challenges and digital twins in cyber-physical systems (CPS) have proven to be effective tools in many aspects. However, human involvement is closely related to radar technology and plays an important role in the operation and management of radars; thus, digital twins’ radars in CPS are insufficient to realize smart radar systems due to the inadequate consideration of human factors. ACP-based parallel intelligence in cyber-physical-social systems (CPSS) is used to construct a novel framework for smart radars, called Parallel Radars. A Parallel Radar consists of three main parts: a Descriptive Radar for constructing artificial radar systems in cyberspace, a Predictive Radar for conducting computational experiments with artificial systems, and a Prescriptive Radar for providing prescriptive control to both physical and artificial radars to complete parallel execution. To connect silos of data and protect data privacy, federated radars are proposed. Additionally, taking mines as an example, the application of Parallel Radars in autonomous driving is discussed in detail, and various experiments have been conducted to demonstrate the effectiveness of Parallel Radars.
Effective road maintenance can not only achieve a balance between limited resources and long-term high-efficiency performance of road but also reduce the loss of life and property caused by road damage to vehicles and pedestrians. Due to the lack of a multidimensional dynamic monitoring system and enough extremely special data, the existing road maintenance system cannot accurately assess the road surface condition and provide timely early warning of sudden road damage. In this article, the M-RM system is proposed, that is, a metaverse-enabled road maintenance system based on cyber-physical-social systems (CPSSs), which fully utilizes the social and artificial system information of CPSS, as well as the simulation, monitoring, diagnosis and prediction functions of road systems in the virtual world of the metaverse. Then, in the road damage detection of system model in the virtual world, for the virtual data of the core assets of the metaverse, we propose an adaptive and information-preserving data augmentation (AIDA) algorithm-based nonclassical receptive field suppression and enhancement, an algorithm developed from human visual cognition. This algorithm enables the generation of a large amount of scarce fidelity data and avoids the introduced noise from impairing the performance of nonaugmented data. Finally, a crack detection algorithm named pay attention twice (PAT) is proposed, which uses the generated virtual data for training, and achieves secondary attention to high-frequency targets by fusing frequency-division convolution and mixed-domain attention mechanism. The detection performance of small targets in uncertain environments is enhanced. The metaverse system built in the current research can not only be used for road maintenance but also empower the traffic metaverse by using the traffic flow prediction module embedded in the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.