Objectives: Myocardial infarction (MI)-induced heart failure (HF) is commonly accompanied with profound effects on skeletal muscle. With the process of MI-induced HF, perturbations in skeletal muscle contribute to muscle atrophy. Exercise is viewed as a feasible strategy to prevent muscle atrophy. The aims of this study were to investigate whether exercise could alleviate MI-induced skeletal muscle atrophy via insulin-like growth factor 1 (IGF-1) pathway in mice. Materials and Methods: Male C57/BL6 mice were used to establish the MI model and divided into three groups: sedentary MI group, MI with aerobic exercise group and MI with resistance exercise group, sham-operated group was used as control. Exercise-trained animals were subjected to four-weeks of aerobic exercise (AE) or resistance exercise (RE). Cardiac function, muscle weight, myofiber size, levels of IGF-1 signaling and proteins related to myogenesis, protein synthesis and degradation and cell apoptosis in gastrocnemius muscle were detected. And H2O2-treated C2C12 cells were intervened with recombinant human IGF-1, IGF-1R inhibitor NVP-AEW541 and PI3K inhibitor LY294002 to explore the mechanism. Results:Exercises up-regulated the IGF-1/IGF-1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling, increased the expressions of Pax7, myogenic regulatory factors (MRFs) and protein synthesis, reduced protein degradation and cell apoptosis in MI-mice. In vitro, IGF-1 up-regulated the levels of Pax7 and MRFs, mTOR and P70S6K, reduced MuRF1, MAFbx and inhibited cell apoptosis via IGF-1R-PI3K/Akt pathway. Conclusion: AE and RE, safely and effectively, alleviate skeletal muscle atrophy by regulating the levels of myogenesis, protein degradation and cells apoptosis in mice with MI via activating IGF-1/IGF-1R-PI3K/Akt pathway.
Skeletal muscle mass and function tend to decline with increasing age. Insulin-like growth factor 1 (IGF-1) plays a key role in promoting skeletal muscle growth. Exercise improves skeletal muscle mass and function via activating the IGF-1 signaling. The aim of this study was to investigate whether different types of exercise could promote muscle hypertrophy, exercise and metabolic capacities, and activate IGF-1 signaling in early aging mice. 12-month-old male C57/BL6 mice were randomly divided into five groups: control group (CON), aerobic exercise group (AE), resistance exercise group (RE), whole-body vibration group (WBV) and electrical stimulation group (ES). Muscle weight, myofiber size, levels of IGF-1 signaling, oxidative stress, protein synthesis and degradation, and apoptosis in gastrocnemius muscle were detected. C2C12 cells were used to explore the mechanism. In this study, we confirmed that four modes of exercise increased skeletal muscle mass, exercise capacity, indicators of metabolism and protein synthesis, and inhibited oxidative stress and apoptosis via activating the IGF-1 pathway. The most effective intervention was RE. We found that WBV promoted muscle hypertrophy better than AE. Furthermore, in vitro experiment, the importance of IGF-1 / IGF-1R-PI3K / Akt signaling for maintaining skeletal muscle mass was further confirmed. AE, RE, WBV and ES increase skeletal muscle mass, exercise capacities, protein synthesis and metabolic enzyme activities, inhibit protein degradation and apoptosis in mice undergoing early aging via activating IGF-1 signaling. Among them, WBV has been shown to be significantly effective and has a similar effect of conventional exercise in promoting muscle hypertrophy.
The mechanism by which aerobic exercise promotes cardiac function after myocardial infarction (MI) is still not fully understand. In this study, we investigated the role of fibroblast growth factor 21 (FGF21) in exercise protecting the cardiac function of MI mice. In vivo, MI was induced by left anterior descending coronary artery ligation in wild type and fgf21 knockout mice on the C57BL/6 background. One week after MI, the mice underwent aerobic exercise for 4 weeks. In vitro, human umbilical vein endothelial cells (HUVECs) were treated with H2O2, recombinant human FGF21 (rhFGF21), fibroblast growth factor receptor 1 (FGFR1) inhibitor (PD166866) and phosphatidylinositol3-kinase (PI3K) inhibitor (LY294002) to explore the potential mechanisms. Scratch wound healing and tubule formation analysis were used to detect the migration and tubule formation ability of HUVECs. Our results showed that aerobic exercise significantly promoted angiogenesis and cardiac function through enhancing the expression of FGF21 and activating FGFR1/PI3K/AKT/VEGF pathway. But such beneficial in cardiac from aerobic exercise were attenuated by fgf21 knockout. AICAR enhanced angiogenesis and cell migration through FGF21/FGFR1/PI3K/AKT/VEGF signaling pathway. Under the intervention of H2O2, rhFGF21 also played the role of promoting angiogenesis and cell migration through the same mechanism. In conclusion, our results showed that FGF21 promoted the aerobic exercise-induced angiogenesis and improved cardiac function via FGFR1/PI3K/ AKT/VEGF signal in MI mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.