Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula-Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix − ). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.legumes | rhizobial symbiosis | nitrogen fixation | symbiotic specificity | NCR peptides
Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatula DNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules.
BackgroundThe treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. However, they still need to face serious adverse effects of chemotherapy. One of these is cardiotoxicity which may lead to progressive heart failure in the long term. Cardiotoxicity is contributed mainly to the use of anthracyclines and might have genetic risk factors. Our goal was to test the association between left ventricular function and genetic variations of candidate genes.MethodsEchocardiography data from medical records of 622 pediatric ALL and 39 OSC patients were collected from the period 1989–2015. Fractional shortening (FS) and ejection fraction (EF) were determined, 70 single nucleotide polymorphisms (SNPs) in 26 genes were genotyped. Multivariate logistic regression and multi-adjusted general linear model were performed to investigate the influence of genetic polymorphisms on the left ventricular parameters. Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method was applied to test for the potential interaction of the studied cofactors and SNPs.ResultsOur results indicate that variations in ABCC2, CYP3A5, NQO1, SLC22A6 and SLC28A3 genes might influence the left ventricular parameters. CYP3A5 rs4646450 TT was 17% among ALL cases with FS lower than 28, and 3% in ALL patients without pathological FS (p = 5.60E-03; OR = 6.94 (1.76–27.39)). SLC28A3 rs7853758 AA was 12% in ALL cases population, while only 1% among controls (p = 6.50E-03; OR = 11.56 (1.98–67.45)). Patients with ABCC2 rs3740066 GG genotype had lower FS during the acute phase of therapy and 5–10 years after treatment (p = 7.38E-03, p = 7.11E-04, respectively). NQO1 rs1043470 rare T allele was associated with lower left ventricular function in the acute phase and 5–10 years after the diagnosis (p = 4.28E-03 and 5.82E-03, respectively), and SLC22A6 gene rs6591722 AA genotype was associated with lower mean FS (p = 1.71E-03), 5–10 years after the diagnosis.ConclusionsGenetic variants in transporters and metabolic enzymes might modulate the individual risk to cardiac toxicity after chemotherapy.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4629-6) contains supplementary material, which is available to authorized users.
PurposeSeveral lines of evidence indicate that the Hippo/Yes-associated protein 1 (YAP1) pathways might play a role in the pathogenesis of asthma. To investigate the possible role of the Hippo/YAP1 pathway in the pathogenesis of asthma or its phenotypes.MethodsThe levels of gene expressions of the members of the Hippo/YAP1 were compared. The presence of the proteins of the YAP1 and FRMD6 were analyzed with Western blot in induced sputum of 18 asthmatic subjects and 10 control subjects. Fourteen single nucleotide polymorphisms (SNPs) in the YAP1 gene were genotyped in 522 asthmatic subjects and 711 healthy controls. The results were evaluated with traditional frequentist methods and with Bayesian network-based Bayesian multilevel analysis of relevance (BN-BMLA).ResultsThe mRNA of all the members of the Hippo/YAP1 pathway could be detected in the induced sputum of both controls and cases. A correlation was found between YAP1 mRNA levels and sputum bronchial epithelial cells (r=0.575, P=0.003). The signal for the FRMD6 protein could be detected in all sputum samples while the YAP1 protein could not be detected in the sputum samples, of the healthy controls and severe asthmatics, but it was detectable in mild asthmatics. The rs2846836 SNP of the YAP1 gene was significantly associated with exercise-induced asthma (odds ratio [OR]=2.1 [1.3-3.4]; P=0.004). The distribution of genotypes of rs11225138 and certain haplotypes of the YAP1 gene showed significant differences between different asthma severity statuses. With BN-BMLA, 2 SNPs, genetic variations in the FRMD6 gene proved to be the most relevant to exercise-induced asthma and allergic rhinitis. These 2 SNPs through allergic rhinitis and exercise-induced asthma were in epistatic interaction with each other.ConclusionsOur results provided additional evidence that the FRMD6/Hippo/YAP1 pathway plays a role in the pathogenesis of asthma. If additional studies can confirm these findings, this pathway can be a potential novel therapeutic target in asthma and other inflammatory airway diseases.
Anthracyclines constitute a fundamental part of the chemotherapy regimens utilized to treat a number of different malignancies both in pediatric and adult patients. These drugs are one of the most efficacious anticancer agents ever invented. On the other hand, anthracyclines are cardiotoxic. Childhood cancer survivors treated with anthracyclines often undergo cardiac complications which are influenced by genetic variations of the patients. The scientific literature comprises numerous investigations in the subject of the pharmacogenetics of anthracyclines. In this review, we provide a comprehensive overview of this research topic. Genetic variants are proposed targets in the personalized treatment in order to individualize dosing and therefore reduce side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.