In actual farms, individual livestock identification technology relies on large models with slow recognition speeds, which seriously restricts its practical application. In this study, we use deep learning to recognize the features of individual cows. Alexnet is used as a skeleton network for a lightweight convolutional neural network that can recognise individual cows in images with complex backgrounds. The model is improved for multiple multiscale convolutions of Alexnet using the short-circuit connected BasicBlock to fit the desired values and avoid gradient disappearance or explosion. An improved inception module and attention mechanism are added to extract features at multiple scales to enhance the detection of feature points. In experiments, side-view images of 13 cows were collected. The proposed method achieved 97.95% accuracy in cow identification with a single training time of only 6 s, which is one-sixth that of the original Alexnet. To verify the validity of the model, the dataset and experimental parameters were kept constant and compared with the results of Vgg16, Resnet50, Mobilnet V2 and GoogLenet. The proposed model ensured high accuracy while having the smallest parameter size of 6.51 MB, which is 1.3 times less than that of the Mobilnet V2 network, which is famous for its light weight. This method overcomes the defects of traditional methods, which require artificial extraction of features, are often not robust enough, have slow recognition speeds, and require large numbers of parameters in the recognition model. The proposed method works with images with complex backgrounds, making it suitable for actual farming environments. It also provides a reference for the identification of individual cows in images with complex backgrounds.
Individual cow identification is a prerequisite for intelligent dairy farming management, and is important for achieving accurate and informative dairy farming. Computer vision-based approaches are widely considered because of their non-contact and practical advantages. In this study, a method based on the combination of Ghost and attention mechanism is proposed to improve ReNet50 to achieve non-contact individual recognition of cows. In the model, coarse-grained features of cows are extracted using a large sensory field of cavity convolution, while reducing the number of model parameters to some extent. ResNet50 consists of two Bottlenecks with different structures, and a plug-and-play Ghost module is inserted between the two Bottlenecks to reduce the number of parameters and computation of the model using common linear operations without reducing the feature map. In addition, the convolutional block attention module (CBAM) is introduced after each stage of the model to help the model to give different weights to each part of the input and extract the more critical and important information. In our experiments, a total of 13 cows’ side view images were collected to train the model, and the final recognition accuracy of the model was 98.58%, which was 4.8 percentage points better than the recognition accuracy of the original ResNet50, the number of model parameters was reduced by 24.85 times, and the model size was only 3.61 MB. In addition, to verify the validity of the model, it is compared with other networks and the results show that our model has good robustness. This research overcomes the shortcomings of traditional recognition methods that require human extraction of features, and provides theoretical references for further animal recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.