Combinatorial libraries of rearranged hypervariable V(H) and V(L) sequences from nonimmunized human donors contain antigen specificities, including anti-self reactivities, created by random pairing of V(H)s and V(L)s. Somatic hypermutation of immunoglobulin genes, however, is critical in the generation of high-affinity antibodies in vivo and occurs only after immunization. Thus, in combinatorial phage display libraries from nonimmunized donors, high-affinity antibodies are rarely found. Lengthy in vitro affinity maturation is often needed to improve antibodies from such libraries. We report the construction of human Fab libraries having a unique combination of immunoglobulin sequences captured from human donors and synthetic diversity in key antigen contact sites in heavy-chain complementarity-determining regions 1 and 2. The success of this strategy is demonstrated by identifying many monovalent Fabs against multiple therapeutic targets that show higher affinities than approved therapeutic antibodies. This very often circumvents the need for affinity maturation, accelerating discovery of antibody drug candidates.
Nanotechnology-mediated anti-inflammatory therapy is emerging as a novel strategy for the treatment of inflammation-induced injury. However, one of the main hurdles for these anti-inflammatory nano-drugs is their potential toxic side effects in vivo. Herein, we uncovered that polydopamine (PDA) nanoparticles with their structure and chemical properties similar to melanin, a natural bio-polymer, displayed a significant anti-inflammation therapeutic effect on acute inflammation-induced injury. PDA with enriched phenol groups functioned as a radical scavenger to eliminate reactive oxygen species (ROS) generated during inflammatory responses. As revealed by in vivo photoacoustic imaging with a H2O2-specific nanoprobe, PDA nanoparticles remarkably reduced intracellular ROS levels in murine macrophages challenged with either H2O2 or lipopolysaccharide (LPS). The anti-inflammatory capacity of PDA nanoparticles was further demonstrated in murine models of both acute peritonitis and acute lung injury (ALI), where diminished ROS generation, reduced proinflammatory cytokines, attenuated neutrophil infiltration, and alleviated lung tissue damage were observed in PDA-treated mice after a single dose of PDA treatment. Our work therefore presents the great promise of PDA nanoparticles as a biocompatible nano-drug for anti-inflammation therapy to treat acute inflammation-induced injury.
Breast cancer stem cells (BCSCs) have been considered responsible for cancer progression, recurrence, metastasis and drug resistance. However, the mechanisms by which cells acquire self‐renewal and chemoresistance properties are remaining largely unclear. Herein, we evaluated the role of miR‐708 and metformin in BCSCs, and found that the expression of miR‐708 is significantly down‐regulated in BCSCs and tumour tissues, and correlates with chemotherapy response and prognosis. Moreover, miR‐708 markedly inhibits sphere formation, CD44+/CD24− ratio, and tumour initiation and increases chemosensitivity of BCSCs. Mechanistically, miR‐708 directly binds to cluster of differentiation 47 (CD47), and regulates tumour‐associated macrophage‐mediated phagocytosis. On the other hand, CD47 is essential for self‐renewal, tumour initiation and chemoresistance of BCSCs, and correlates with the prognosis of breast cancer patients. In addition, the anti‐type II diabetes drug metformin are found to be involved in the miR‐708/CD47 signalling pathway. Therefore, our study demonstrated that miR‐708 plays an important tumour suppressor role in BCSCs self‐renewal and chemoresistance, and the miR‐708/CD47 regulatory axis may represent a novel therapeutic mechanism of metformin in BCSCs.
Scavenging reactive oxygen species (ROS) by antioxidants is the important therapy to cerebral ischemia-reperfusion injury (CIRI) in stroke. The antioxidant with novel dual-antioxidant mechanism of directly scavenging ROS and indirectly through antioxidant pathway activation may be a promising CIRI therapeutic strategy. In our study, a series of chalcone analogues were designed and synthesized, and multiple potential chalcone analogues with dual antioxidant mechanisms were screened. Among these compounds, the most active
33
not only conferred cytoprotection of H
2
O
2
-induced oxidative damage in PC12 cells through scavenging free radicals directly and activating NRF2/ARE antioxidant pathway at the same time, but also played an important role against ischemia/reperfusion-related brain injury in animals. More importantly, in comparison with mono-antioxidant mechanism compounds,
33
exhibited higher cytoprotective and neuroprotective potential
in vitro
and
in vivo.
Overall, our findings showed compound
33
could emerge as a promising anti-ischemic stroke drug candidate and provided novel dual-antioxidant mechanism strategies and concepts for oxidative stress-related diseases treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.