Aim and objective: To explore nurses' experiences regarding shift patterns while providing front-line care for COVID-19 patients in isolation wards of hospitals in Shanghai and Wuhan during the novel coronavirus pandemic. Our findings will help to optimise shift work scheduling, use the existing nursing workforce more efficiently and improve nursing quality. Background: Nurses are one of the main professionals fighting against COVID-19. Providing care for COVID-19 patients is challenging. In isolation wards, the workload has increased, and the workflow and shift patterns are completely different from the usual. More importantly, there is a shortage of nurses. Therefore, it is essential and urgent to arrange nurses' shifts correctly and use the existing workforce resources efficiently. Design: A qualitative descriptive study of 14 nurses in Chinese hospitals was conducted. Methods: Semi-structured interviews were used based on the phenomenological research method; data were analysed using Colaizzi's method of data analysis. This study aligns with the COREQ checklist. Results: Four themes were extracted: assess the competency of nurses to assign nursing work scientifically and reasonably, reorganise nursing workflow to optimise shift patterns, communicate between managers and front-line nurses to humanise shift patterns, and nurses' various feelings and views on shift patterns. Conclusion: It is necessary to arrange shift patterns scientifically and allocate workforce rationally to optimise nursing workforce allocation, reduce nurses' workload, improve nursing quality and promote physical and mental health among nurses during the COVID-19 pandemic. Relevance to clinical practice: This study emphasised nurses' experiences on shift patterns in isolation wards, providing useful information to manage shift patterns. Nursing managers should arrange shifts scientifically, allocate nursing workforce rationally, formulate emergency plans and establish emergency response rosters during the COVID-19 pandemic. | 4271 GAO et Al.
Low-birth-weight (LBW) piglets are at a high-risk for postnatal growth failure, mortality, and metabolic disorders later in life. Early-life microbial exposure is a potentially effective intervention strategy for modulating the health and metabolism of the host. Yet, it has not been well elucidated whether the gut microbiota development in LBW piglets is different from their normal littermates and its possible association with metabolite profiles. In the current study, 16S rRNA gene sequencing and metabolomics was used to investigate differences in the fecal microbiota and metabolites between LBW and normal piglets during early-life, including day 3 (D3), 7 (D7), 14 (D14), 21 (D21, before weaning), and 35 (D35, after birth). Compared to their normal littermates, LBW piglets harbored low proportions of Faecalibacterium on D3, Flavonifractor on D7, Lactobacillus, Streptococcus, and Prevotella on D21, as well as Howardella on D21 and D35. However, the abundance of Campylobacter on D7 and D21, Prevotella on D14 and D35, Oscillibacter and Moryella on D14 and D21, and Bacteroides on D21 was significantly higher in LBW piglets when compared with normal piglets. The results of the metabolomics analysis suggested that LBW significantly affected fecal metabolites involved in fatty acid metabolism (e.g., linoleic acid, α-linolenic acid, and arachidonic acid), amino acid metabolism (e.g., valine, phenylalanine, and glutamic acid), as well as bile acid biosynthesis (e.g., glycocholic acid, 25-hydroxycholesterol, and chenodeoxycholic acid). Spearman correlation analysis revealed a significant negative association between Campylobacter and N1-acetylspermine on D7, Moryella and linoleic acid on D14, Prevotella and chenodeoxycholic acid on D21, and Howardella and phenylalanine on D35, respectively. Collectively, LBW piglets have a different gut bacterial community structure when compared with normal-birth-weight (NBW) piglets during early-life, especially from 7 to 21 days of age. Also, a distinctive metabolic status in LBW piglets might be partly associated with the altered intestinal microbiota. These findings may further elucidate the factors potentially associated with the impaired growth and development of LBW piglets and facilitate the development of nutritional interventions.
Microbial exposure during early life plays a pivotal role in modulating the health and intestinal development of the host. Our recent study showed that the low-birth-weight (LBW) piglets harbored a different fecal microbiota compared to normal-birth-weight (NBW) piglets during early life with a lower abundance of the genus Lactobacillus . Considering the spatial variations in gut microbiota at distinct gut locations, this study was designed to further investigate the differences in the microbiota composition and predominant Lactobacillus species in the ileum and colon between LBW and NBW piglets during early life, including day 7 (D7), day 21 (D21, before weaning), and day 35 (D35, 2 weeks after weaning). Compared with the normal group, LBW piglets harbored a significantly lower proportion of short-chain fatty acids producing microbes, such as Ruminococcaceae and Prevotellaceae in the ileum on D7, Alistipes and Lachnospiraceae in the colon on D7, Blautia in the colon on D21, and Ruminiclostridium 9 in the colon on D35. The relative abundance of the phylum Bacteroidetes was also declined in both ileum and colon of LBW piglets on D7. Meanwhile, the levels of total SCFAs on D7, D21, and D35, acetate and valerate on D7 and D21, propionate on D21, and lactate on D21 and D35, were also declined in the colon of LBW piglets. Moreover, functional alterations in the gut microbiota of LBW piglets were characterized by differentially abundant microbial genes involved in multiple pathways such as amino acid metabolism, energy metabolism, replication and repair, and metabolism of cofactors and vitamins in the colon. Additionally, lower numbers of L. salivarius on D7 and L. amylovorus on D21 resided in the colon of LBW piglets compared to those in the normal ones. Collectively, LBW piglets have altered bacterial communities, microbial metabolism and gene functions in the ileum and colon during early life, especially the colonic community. This work will help to develop novel ideas in identifying the reliable biomarkers affecting the gut microbiota development in LBW piglets during early life and facilitate the development of new nutritional interventions.
Oat bran has drawn great attention within human research for its potential role in improving gut health. However, research regarding the impact of oat bran on nutrient utilization and intestinal functions in pigs is limited. The purpose of this study was to investigate the effects of oat bran on nutrient digestibility, intestinal microbiota, and inflammatory responses in the hindgut of growing pigs. Twenty-six growing pigs were fed either a basal diet (CON) or a basal diet supplemented with 10% oat bran (OB) within a 28 day feeding trial. Results showed that digestibility of dietary gross energy, dry matter, organic matter, and crude protein were lower in the OB group compared to the CON group on day 14, but no differences were observed between the two groups on day 28. In the colon, the relative abundance of operational taxonomic units (OTUs) associated with Prevotella, Butyricicoccus, and Catenibacterium were higher, while those associated with Coprococcus and Desulfovibrio were lower in the OB group compared to the CON group. Oat bran decreased mRNA expression of caecal interleukin-8 (IL-8), as well as colonic IL-8, nuclear factor-κB (NF-κB), and tumor necrosis factor-α (TNF-α) of the pigs. In summary, oat bran treatment for 28 day did not affect dietary nutrient digestibility, but promoted the growth of cellulolytic bacteria and ameliorated inflammatory reactions in the hindgut of growing pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.