A class of boundary value problems of Caputo fractional q-difference equation is introduced. Green’s function and its properties for this problem are deduced. By applying these properties and the Leggett-Williams fixed-point theorem, existence criteria of three positive solutions are obtained. At last, some examples are given to illustrate the validity of our main results.
In this paper, we study the dynamic behavior of a stochastic tungiasis model for public health education. First, the existence and uniqueness of global positive solution of stochastic models are proved. Secondly, by constructing Lyapunov function and using It
o
^
formula, sufficient conditions for disease extinction and persistence in the stochastic model are proved. Thirdly, under the condition of disease persistence, the existence and uniqueness of an ergodic stationary distribution of the model is obtained. Finally, the importance of public health education in preventing the spread of tungiasis is illustrated through the combination of theoretical results and numerical simulation.
We investigate the traveling wave solutions of a competitive integrodifference system without comparison principle. In the earlier conclusions, a threshold of wave speed is defined while the existence or nonexistence of traveling wave solutions remains open when the wave speed is the threshold. By constructing generalized upper and lower solutions, we confirm the existence of traveling wave solutions when the wave speed is the threshold. Our conclusion completes the known results and shows the different decay behavior of traveling wave solutions compared with the case of large wave speeds.
In this paper, we introduce the application of three fixed point theorem by discussing the existence of three positive solutions for a class of Caputo fractional difference equation boundary value problem. We establish the condition of the existence of three positive solutions for this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.