Background. Oxidative stress (OS) reactions are closely related to the development and progression of bladder cancer (BCa). This project aimed to identify new potential biomarkers to predict the prognosis of BCa and improve immunotherapy. Methods. We downloaded transcriptomic information and clinical data on BCa from The Cancer Genome Atlas (TCGA). Screening for OS genes was statistically different between tumor and adjacent normal tissue. A coexpression analysis between lncRNAs and differentially expressed OS genes was performed to identify OS-related lncRNAs. Then, differentially expressed oxidative stress lncRNAs (DEOSlncRNAs) between tumors and normal tissues were identified. Univariate/multivariate Cox regression analysis was performed to select the lncRNAs for risk assessment. LASSO analysis was conducted to establish a prognostic model. The prognostic risk model could accurately predict BCa patient prognosis and reveal a close correlation with clinicopathological features. We analyzed the principal component analysis (PCA), immune microenvironment, and half-maximal inhibitory concentration (IC50) in the risk groups. Results. We constructed a model containing eight DEOSlncRNAs (AC021321.1, AC068196.1, AC008750.1, SETBP1-DT, AL590617.2, THUMPD3-AS1, AC112721.1, and NR4A1AS). The prognostic risk model showed better results in predicting the prognosis of BCa patients and was strongly correlated with clinicopathological characteristics. We found great agreement between the calibration plots and prognostic predictions in this model. The areas under the receiver operating characteristic (ROC) curve (AUCs) at 1, 3, and 5 years were 0.792, 0.804, and 0.843, respectively. This model also showed good predictive ability regarding the tumor microenvironment and tumor mutation burden. In addition, the high-risk group was more sensitive to eight therapeutic agents, and the low-risk group was more responsive to five therapeutic agents. Sixteen immune checkpoints were significantly different between the two risk groups. Conclusion. Our eight DEOSlncRNA risk models provide new insights into predicting prognosis and clinical progression in BCa patients.
Background: Pulmonary tuberculosis (PTB) is one of the serious infectious diseases worldwide; however, the gene network involved in the host response remain largely unclear. Methods: This study integrated two cohorts profile datasets GSE34608 and GSE83456 to elucidate the potential gene network and signaling pathways in PTB. Differentially expressed genes (DEGs) were obtained for Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis using Metascape database. Protein-Protein Interaction (PPI) network of DEGs was constructed by the online database the Search Tool for the Retrieval of Interacting Genes (STRING). Modules were identified by the plug-in APP Molecular Complex Detection (MCODE) in Cytoscape. GO and KEGG pathway of Module 1 were further analyzed by STRING. Hub genes were selected for further expression validation in dataset GSE19439. The gene expression level was also investigated in the dataset GSE31348 to display the change pattern during the PTB treatment. Results: Totally, 180 shared DEGs were identified from two datasets. Gene function and KEGG pathway enrichment revealed that DEGs mainly enriched in defense response to other organism, response to bacterium, myeloid leukocyte activation, cytokine production, etc. Seven modules were clustered based on PPI network. Module 1 contained 35 genes related to cytokine associated functions, among which 14 genes, including chemokine receptors, interferon-induced proteins and Toll-like receptors, were identified as hub genes. Expression levels of the hub genes were validated with a third dataset GSE19439. The signature of this core gene network showed significant response to Mycobacterium tuberculosis (Mtb) infection, and correlated with the gene network pattern during anti-PTB therapy. Conclusions: Our study unveils the coordination of causal genes during PTB infection, and provides a promising gene panel for PTB diagnosis. As major regulators of the host immune response to Mtb infection, the 14 hub genes are also potential molecular targets for developing PTB drugs.
Background: Pulmonary tuberculosis (PTB) is one of the serious infectious diseases worldwide; however, the gene network involved in the host response remain largely unclear. Methods: This study integrated two cohorts profile datasets GSE34608 and GSE83456 to elucidate the potential gene network and signaling pathways in PTB. Differentially expressed genes (DEGs) were obtained for Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis using Metascape database. Protein-Protein Interaction (PPI) network of DEGs was constructed by the online database the Search Tool for the Retrieval of Interacting Genes (STRING). Modules were identified by the plug-in APP Molecular Complex Detection (MCODE) in Cytoscape. GO and KEGG pathway of Module 1 were further analyzed by STRING. Hub genes were selected for further expression validation in dataset GSE19439. The gene expression level was also investigated in the dataset GSE31348 to display the change pattern during the PTB treatment. Results: Totally, 180 shared DEGs were identified from two datasets. Gene function and KEGG pathway enrichment revealed that DEGs mainly enriched in defense response to other organism, response to bacterium, myeloid leukocyte activation, cytokine production, etc. Seven modules were clustered based on PPI network. Module 1 contained 35 genes related to cytokine associated functions, among which 14 genes, including chemokine receptors, interferon-induced proteins and Toll-like receptors, were identified as hub genes. Expression levels of the hub genes were validated with a third dataset GSE19439. The signature of this core gene network showed significant response to Mycobacterium tuberculosis (Mtb) infection, and correlated with the gene network pattern during anti-PTB therapy. Conclusions: Our study unveils the coordination of causal genes during PTB infection, and provides a promising gene panel for PTB diagnosis. As major regulators of the host immune response to Mtb infection, the 14 hub genes are also potential molecular targets for developing PTB drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.