The fruit fly Bactrocera tau (Walker) is an important quarantine pest that damages fruits and vegetables throughout Asian regions. Host commodities shipped from infested areas should undergo phytosanitary measures to reduce the risk of shipping viable flies. The dose-response tests with 1-d-old eggs and 3-, 5-, 7-, 8-d-old larvae were initiated to determine the most resistant stages in fruits, and the minimum dose for 99.9968% prevention of adult eclosion at 95% confidence level was validated in the confirmatory tests. The results showed that 1) the pupariation rate was not affected by gamma radiation except for eggs and first instars, while the percent of eclosion was reduced significantly in all instars at all radiation dose; 2) the tolerance to radiation increased with increasing age and developmental stage; 3) the estimated dose to 99.9968% preventing adult eclosion from late third instars was 70.9 Gy (95% CL: 65.6-78.2, probit model) and 71.8 Gy (95% CL: 63.0-87.3, logit model); and iv) in total, 107,135 late third instars cage infested in pumpkin fruits were irradiated at the target dose of 70 Gy (62.5-85.0, Gy measured), which resulted in no adult emergence in the two confirmatory tests. Therefore, a minimum dose of 85 and 72 Gy, which could prevent adult emergence at the efficacy of 99.9972 and 99.9938% at the 95% confidence level, respectively, can be recommended as a minimum dose for phytosanitary treatment of B. tau in any host fruits and vegetables under ambient atmospheres.
Forced air heat treatment could induce defenses to protect fruit from pathogen attacks and has been applied as an alternative to methyl bromide for phytosanitary treatment before exportation. However, few studies were reported on the regulation mechanism of antifungal effect and delayed physiological disorders of papaya by heat treatment. Therefore, we aim to explore the fruit’s resistance to pathogens and the inhibition of physiological disorders by metabolomic profiling. In our study, papaya fruits were treated with 47.2°C for 30, 60, and 90 min by forced hot air treatment. The disease resistance against Colletotrichum gloeosporioides, quality parameters, and metabolites of papaya fruits were measured during 10 days of storage after heat treatment by metabolomic profiling. Papaya fruits after 30 and 60 min heat treatment had higher firmness, a delayed degreening and yellowing (lower a value) process, and a higher lightness (L) and hue angle (h) during storage. Heat treatment also delayed ripening, inhibiting the growth of C. gloeosporioides and softening of papaya. Metabolites and enzymes inhibited ROS scavenging, depressed ABA-regulated respiratory, and activated phenylpropanoid metabolism. Our study provides a broad picture of fruit resistance to pathogens and the inhibition of physiological disorders by metabolomic profiling, which is induced by heat treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.