Background-Galectin-3 has been implicated in the development of organ fibrosis. It is unknown whether it is a relevant therapeutic target in cardiac remodeling and heart failure. Methods and Results-Galectin-3 knock-out and wild-type mice were subjected to angiotensin II infusion (2.5 µg/kg for 14 days) or transverse aortic constriction for 28 days to provoke cardiac remodeling. The efficacy of the galectin-3 inhibitor N-acetyllactosamine was evaluated in TGR(mREN2)27 (REN2) rats and in wild-type mice with the aim of reversing established cardiac remodeling after transverse aortic constriction. In wild-type mice, angiotensin II and transverse aortic constriction perturbations caused left-ventricular (LV) hypertrophy, decreased fractional shortening, and increased LV end-diastolic pressure and fibrosis (P<0.05 versus control wild type). Galectin-3 knock-out mice also developed LV hypertrophy but without LV dysfunction and fibrosis (P=NS). In REN2 rats, pharmacological inhibition of galectin-3 attenuated LV dysfunction and fibrosis. To elucidate the beneficial effects of galectin-3 inhibition on myocardial fibrogenesis, cultured fibroblasts were treated with galectin-3 in the absence or presence of galectin-3 inhibitor. Inhibition of galectin-3 was associated with a downregulation in collagen production (collagen I and III), collagen processing, cleavage, cross-linking, and deposition. Similar results were observed in REN2 rats. Inhibition of galectin-3 also attenuated the progression of cardiac remodeling in a long-term transverse aortic constriction mouse model. Conclusions-Genetic disruption and pharmacological inhibition of galectin-3 attenuates cardiac fibrosis, LV dysfunction, and subsequent heart failure development. Drugs binding to galectin-3 may be potential therapeutic candidates for the prevention or reversal of heart failure with extensive fibrosis. (Circ Heart Fail. 2013;6:107-117.)
Galectin-3 is a member of the galectin family, which consists of animal lectins that bind β-galactosides. Recently, a role for galectin-3 in the pathophysiology of heart failure has been suggested. It was observed that galectin-3 is specifically upregulated in decompensated heart failure compared with compensated heart failure in animal models of heart failure. This has been associated with activation of fibroblasts and macrophages, which are a hallmark of cardiac remodeling. Therefore, galectin-3 may be a culprit biomarker in heart failure. Initial clinical observations indicate that galectin-3 may be a useful biomarker for decompensated heart failure, with incremental value over well-used “pressure-dependent” biomarkers, such as B-type natriuretic peptide. Future studies should focus on galectin-3 biology to better address the usefulness of galectin-3 as a biomarker and probe the usefulness of anti-galectin-3 therapy in treating heart failure.
An ultrasensitive electrochemical cytosensor for quantitative determination of carcinoembryonic antigen (CEA)-positive tumor cells was developed using three-dimensional (3D) architecture Au@BSA microspheres as sensing layer with the conjugation of targeting molecule monoclonal anti-CEA antibody (anti-CEA). The prepared Au@BSA microspheres exhibited satisfactory biocompatibility for cell proliferation via evaluation from thiazolyl blue tetrazolium bromide (MTT) assay, providing a suitable platform for cell adhesion study. Attributed to the excellent electroconductivity of Au@BSA, amplified electrochemical signals could be obtained and resulted in the greatly enhanced detection sensitivity. Electrochemical testing techniques including electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and cyclic voltammetry (CV) were applied to assess the optimal conditions, specificity, and detection performance of as-fabricated cytosensor. The attachment of CEA-positive BXPC-3 cells onto the anti-CEA immobilized sensing layer led to the increased EIS responses, which changed linearly in the cell concentration range from 5.2 × 10(1) to 5.2 × 10(7) cells mL(-1) with a detection limit of 18 cells mL(-1). This proposed cytosensing strategy revealed high specificity to CEA-positive cells, acceptable intra-assay precision, excellent fabrication reproducibility with the RSD of 3.5%, and good stability owing to the outside BSA biocompatible layer, developing a promising technique for early monitoring of tumor cells at a lower level.
Caged antisense oligodeoxynucleotides (asODNs) are synthesized by linking two ends of linear oligodeoxynucleotides using a photocleavable linker. Two of them (H30 and H40) have hairpin-like structures which show a large difference in thermal stability (ΔTm = 17.5°C and 11.6°C) comparing to uncaged ones. The other three (C20, C30 and C40) without stable secondary structures have the middle 20 deoxynucleotides complementary to 40-mer RNA. All caged asODNs have restricted opening which provides control over RNA/asODN interaction. RNase H assay results showed that 40-mer RNA digestion could be photo-modulated 2- to 3-fold upon light-activation with H30, H40, C30 and C40, while with C20, RNA digestion was almost not detectable; however, photo-activation triggered >20-fold increase of RNA digestion. And gel shift assays showed that it needed >0.04 μM H40 and 0.5 μM H30 to completely bind 0.02 μM 40-mer RNA, and for C40 and C30, it needed >0.2 μM and 0.5 μM for 0.02 μM 40-mer RNA binding. However, even 4 μM C20 was not able to fully bind the same concentration of 40-mer RNA. By simple adjustment of ring size of caged asODNs, we could successfully photoregulate their hybridization with mRNA and target RNA hydrolysis by RNase H with light activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.