The histopathological diagnosis of high-grade endometrioid and serous carcinoma of the ovary is poorly reproducible under the current morphology based classification system, especially for anaplastic, high-grade tumours. The transcription factor Wilms' tumour-1 (WT1) is differentially expressed among the gynaecological epithelia from which epithelial ovarian cancers (EOCs) are believed to originate. In EOCs, WT1 protein is observed in the majority of serous carcinomas and in up to 30% of endometrioid carcinomas. It is unclear whether the latter is a reflection of the actual incidence of WT1 protein expression in endometrioid carcinomas, or whether a significant number of high-grade serous carcinomas have been misclassified as endometrioid carcinoma. Several genetic aberrations are reported to occur in EOCs. These include mutation of the TP53 gene, aberrant activation of beta-catenin signalling and loss of PTEN protein expression, among others. It is unclear whether these aberrations are histotype-specific. The aim of this study was to better define the molecular characteristics of serous and endometrioid carcinomas in an attempt to address the problems with the current histopathological classification methods. Gene expression profiles were analysed to identify reproducible gene expression phenotypes for endometrioid and serous carcinomas. Tissue microarrays (TMA) were used to assess the incidence of TP53, beta-catenin and PTEN aberrations in order to correlate their occurrence with WT1 as an immunohistochemistry based biomarker of serous histotype. It was found that nuclear WT1 protein expression can identify misclassified high-grade endometrioid carcinomas and these tumours should be reassigned to serous histotype. Although low-grade endometrioid carcinomas rarely progress to high-grade carcinomas, a combined WT1-negative, TP53-positive immunophenotype may identify an uncommon high-grade subtype of ovarian endometrioid carcinoma. GEO database: array data accession number GSE6008.
BackgroundThe X-linked ribosomal protein S4 (RPS4X), which is involved in cellular translation and proliferation, has previously been identified as a partner of the overexpressed multifunctional protein YB-1 in several breast cancer cells. Depletion of RPS4X results in consistent resistance to cisplatin in such cell lines.MethodsAs platinum-based chemotherapy is a standard first line therapy used to treat patients with ovarian cancer, we evaluated the prognostic value of RPS4X and YB-1 at the protein level in specimen from 192 high-grade serous epithelial ovarian cancer patients.ResultsImmunohistochemistry studies indicated that high expression of RPS4X was associated with a lower risk of death and later disease progression (HR = 0.713, P = 0.001 and HR = 0.761, P = 0.001, respectively) as compared to low expression of RPS4X. In contrast, YB-1 was not significantly associated with either recurrence or survival time in this cohort. Finally, the depletion of RPS4X with different siRNAs in two different ovarian cancer cell lines reduced their proliferative growth rate but more importantly increased their resistance to cisplatin.ConclusionAltogether, these results suggest that the levels of RPS4X could be a good indicator for resistance to platinum-based therapy and a prognostic marker for ovarian cancer. Our study also showed that RPS4X is an independent prognostic factor in patients with serous epithelial ovarian cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.