At present, there are numerous examples in which symbiotic nitrogen fixation by rhizobia can totally replace the use of nitrogen fertilizers in legume crops. Over the years, there has been a great effort by research institutions to develop and select rhizobial inoculants adapted for these crops. The symbiotic process is highly dependent on the dynamic exchange of signals and molecular nutrients between partners. Our focus in this review was to discuss the two key determinants in successful symbiotic interactions of rhizobia to nodulate pulses. One of them is the production of exopolysaccharides (EPS) and the other the presence of the type VI secretion system (T6SS). EPS are extracellular polymers weakly associated with the bacterial surface and are abundantly released into acid soils facilitating, among other functions, an adaptation of rhizobia to this environment. On the other hand, different protein secretion systems, involved in symbiosis, have been described in rhizobia. This is not the case with the T6SS. The current availability of various rhizobial genomes offers the possibility of discussing its role in symbiosis. The study of these determinants will be of great utility for the selection of effective inoculants for legumes, a promising way to improve nitrogen acquisition by legumes.
Many bacteria of the genus Bradyrhizobium are capable of inducing nodules in legumes. In this work, the importance of a type VI secretion system (T6SS) in a symbiotic strain of the genus Bradyrhizobium is described. T6SS of Bradyrhizobium sp. LmicA16 (A16) is necessary for efficient nodulation with Lupinus micranthus and L. angustifolius. A mutant in the gene vgrG, coding for a component of the T6SS nanostructure, induced less nodules and smaller plants than the wild type strain (wt) and was less competitive when coinoculated with the wt strain. A16 T6SS genes are organized in a 26 kb DNA region in two divergent gene clusters of nine genes each. One of these genes codes for a protein (Tsb1) of unknown function but containing a methyltransferase domain. A tsb1 mutant showed an intermediate symbiotic phenotype regarding vgrG mutant and higher mucoidy and motility than the wt strain in free living conditions. T6SS promoter fusions to the lacZ reporter indicate expression in nodules but not in free living cells grown in different media and conditions. The analysis of nodule structure revealed that the level of nodule colonization was significantly reduced in the mutants with respect to the wt strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.