A three-dimensional numerical model of the soil vapor-to-indoor air pathway is developed and used as a tool to anticipate not-yet-measured relationships between the vapor attenuation coefficient, alpha (indoor air concentration/source vapor concentration), and vapor source-building lateral separation, vapor source depth, and building construction characteristics (depth of building foundation) for nondegrading chemicals. The numerical model allows for diffusive and advective transport, multicomponent systems and reactions, spatially distributed foundation cracks, and transient indoor and ambient pressure fluctuations. Simulations involving different lateral separations between the vapor source and building show decreasing alpha values with increasing lateral separation. For example, alpha is 2 orders of magnitude less when a 30 m x 30 m source located 8 m below ground surface is displaced from the edge of the building by 20 m. The decrease in alpha with increasing lateral separation is greater for shallower source depths. For example, alpha is approximately 5 orders of magnitude less when a 30 m x 30 m source located 3 m below ground surface is displaced from the edge of the building by 20 m. To help visualize the effects of changing vapor source-building separations, normalized vapor concentration contour plots for both horizontal and vertical cross sections are presented for a sequence of lateral separations ranging from the case in which the 30 m x 30 m source and 10 m x 10 m building footprint centers are collocated to shifting of the source positioning by 50 m. Simulations involving basement and slab-on-grade constructions produce similar trends. In addition, when buildings are overpressurized to create outflow to soil gas on the order of 1-3 L/min, emissions to indoor air are reduced by over 5 orders of magnitude relative to intrusion rates at zero building underpressurization. The results are specific to simulations involving homogeneous soil properties, nondegrading chemicals, steady source concentrations and building underpressurizations, and the geometries studied in this work.
Steady-state vapor intrusion scenarios involving aerobically biodegradable chemicals are studied using a three-dimensional multicomponent numerical model. In these scenarios, sources of aerobically biodegradable chemical vapors are placed at depths of 1-14 m beneath a 10 m x 10 m basement or slab-on-grade construction building, and the simultaneous transport and reaction of hydrocarbon and oxygen vapors are simulated. The results are presented as Johnson and Ettinger attenuation factors alpha (predicted indoor air hydrocarbon concentration/source vapor concentration), and normalized contour plots of hydrocarbon and oxygen concentrations. In addition to varying the vapor source depth, the effects of source concentration (2-200 mg chemical/L vapor) and oxygen-limited first-order reaction rates (0.018-1.8 h(-1)) are studied. Hydrocarbon inputs were specific to benzene, although the relevant properties are similar to those for a range of hydrocarbons of interest. Overall, the results suggest that aerobic biodegradation could play a significant role in reducing vapor intrusion into buildings (decreased alpha-values) relative to the no-biodegradation case, with the significance of aerobic biodegradation increasing with increasing vapor source depth, decreasing vapor source concentration, and increasing first-order biodegradation rate. In contrast to the no-biodegradation case, differences in foundation construction can be significant in some settings. The significance of aerobic biodegradation is directly related to the extent to which oxygen is capable of migrating beneath the foundation. For example, in the case of a basement scenario with a 200 mg/L vapor source located at 3 m bgs, oxygen is consumed before it can migrate beneath the foundation, so the attenuation factors for simulations with and without aerobic biodegradation are similar for all first-order rates studied. For the case of a 2 mg/L vapor source located at 8 m bgs, the oxygen is widely distributed beneath the foundation, and the attenuation factor for the biodegradation case ranges from about 3 to 18 orders-of-magnitude less than that for the no-biodegradation case.
Aerobic biodegradation can contribute significantly to the attenuation of petroleum hydrocarbons vapors in the unsaturated zone; however, most regulatory guidance for assessing potential human health risks via vapor intrusion to indoor air either neglect biodegradation in developing generic screening levels or allow for only one order of magnitude additional attenuation for aerobically degradable compounds, which may be overly conservative in some cases. This paper describes results from three-dimensional numerical model simulations of vapor intrusion for petroleum hydrocarbons to assess the influence of aerobic biodegradation on the attenuation factor for a variety of source concentrations and depths for residential buildings with basements and slab-on-grade construction. The simulations conducted in this study provide a framework for understanding the degree to which bioattenuation will occur under a variety of scenarios and provide insight into site conditions that will result in significant biodegradation. This improved understanding may be used to improve the conceptual model of contaminant transport, guide field data collection and interpretation, and estimate semi-site-specific attenuation factors for combinations of source concentrations, source depth, oxygen distribution, and building characteristics where site conditions reasonably match the scenarios simulated herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.