Background: The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results: We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system.
BackgroundThe cultivar Micro-Tom (MT) is regarded as a model system for tomato genetics due to its short life cycle and miniature size. However, efforts to improve tomato genetic transformation have led to protocols dependent on the costly hormone zeatin, combined with an excessive number of steps.ResultsHere we report the development of a MT near-isogenic genotype harboring the allele Rg1 (MT-Rg1), which greatly improves tomato in vitro regeneration. Regeneration was further improved in MT by including a two-day incubation of cotyledonary explants onto medium containing 0.4 μM 1-naphthaleneacetic acid (NAA) before cytokinin treatment. Both strategies allowed the use of 5 μM 6-benzylaminopurine (BAP), a cytokinin 100 times less expensive than zeatin. The use of MT-Rg1 and NAA pre-incubation, followed by BAP regeneration, resulted in high transformation frequencies (near 40%), in a shorter protocol with fewer steps, spanning approximately 40 days from Agrobacterium infection to transgenic plant acclimatization.ConclusionsThe genetic resource and the protocol presented here represent invaluable tools for routine gene expression manipulation and high throughput functional genomics by insertional mutagenesis in tomato.
The transition from flowering to fruit production, namely fruit set, is crucial to ensure successful sexual plant reproduction. Although studies have described the importance of hormones (i.e. auxin and gibberellins) in controlling fruit set after pollination and fertilization, the role of microRNA-based regulation during ovary development and fruit set is still poorly understood. Here we show that the microRNA159/GAMYB1 and -2 pathway (the miR159/GAMYB1/2 module) is crucial for tomato ovule development and fruit set. MiR159 and SlGAMYBs were expressed in preanthesis ovaries, mainly in meristematic tissues, including developing ovules. SlMIR159-overexpressing tomato cv. Micro-Tom plants exhibited precocious fruit initiation and obligatory parthenocarpy, without modifying fruit shape. Histological analysis showed abnormal ovule development in such plants, which led to the formation of seedless fruits. SlGAMYB1/2 silencing in SlMIR159-overexpressing plants resulted in misregulation of pathways associated with ovule and female gametophyte development and auxin signalling, including AINTEGUMENTA-like genes and the miR167/SlARF8a module. Similarly to SlMIR159-overexpressing plants, SlGAMYB1 was downregulated in ovaries of parthenocarpic mutants with altered responses to gibberellins and auxin. SlGAMYBs likely contribute to fruit initiation by modulating auxin and gibberellin responses, rather than their levels, during ovule and ovary development. Altogether, our results unveil a novel function for the miR159-targeted SlGAMYBs in regulating an agronomically important trait, namely fruit set.
Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.