Microbial populations associated to poplar are well described in non-contaminated and metal-contaminated environments but more poorly in the context of polycyclic aromatic hydrocarbon (PAH) contamination. This study aimed to understand how a gradient of phenanthrene (PHE) contamination affects poplar growth and the fungal microbiome in both soil and plant endosphere (roots, stems and leaves). Plant growth and fitness parameters indicated that the growth of Populus canadensis was impaired when PHE concentration increased above 400 mg kg−1. Values of alpha-diversity indicators of fungal diversity and richness were not affected by the PHE gradient. The PHE contamination had a stronger impact on the fungal community composition in the soil and root compartments compared to that of the aboveground organs. Most of the indicator species whose relative abundance was correlated with PHE contamination decreased along the gradient indicating a toxic effect of PHE on these fungal OTUs (Operational Taxonomic Units). However, the relative abundance of some OTUs such as Cadophora, Alternaria and Aspergillus, potentially linked to PHE degradation or being plant-beneficial taxa, increased along the gradient. Finally, this study allowed a deeper understanding of the dual response of plant and fungal communities in the case of a soil PAH contamination gradient leading to new perspectives on fungal assisted phytoremediation.
Polycyclic aromatic hydrocarbon (PAH) contamination of industrial wasteland soils affects microbial diversity, but little is known about the dose-response effects of such contaminants on taxonomic and functional diversities of rhizospheric and plant endophytic bacteria. This study focused on the response of soil and root bacterial communities associated to poplar grown in a contamination gradient of phenanthrene (PHE). It was hypothesized that the increase in contamination would modify gradually the bacterial diversity and functions. The effects of the PHE contamination were limited to soil communities and did not affect the poplar root endophytome where Streptomyces and Cutibacterium were the most abundant genera. Along the PHE gradient, alpha-diversity indices decreased and the community structure of soil bacteria at the taxonomic level shifted. The abundance of genes involved in PAH-degradation pathways and the relative proportion of certain microbial taxa such as Polaromonas, Sphingopyxis, Peredibacter, Phenylobacterium, Ramlibacter, Sphingomonas, Pseudomonas, often described as potential PAH biodegraders, increased with the PHE concentration in the soil community. Conversely, the contamination negatively impacted other taxa like Nocardioides, Streptomyces, Gaiella, Solirubrobacter, Bradyrhizobium and Nitrospira. Functional inference and enzymatic activity measurements revealed that some bacterial functions related to carbon, nitrogen and phosphorus cycles were modified in soil throughout the PHE gradient. This study allowed a deeper understanding of the complex plant-bacteria interactions in the case of soil PAH contamination and the potential impact on soil functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.