The wide use of copper is limited by its rapid oxidation. Main oxidation mitigation approaches involve alloying or surface passivation technologies. However, surface alloying often modifies the physical properties of copper, while surface passivation is characterized by limited thermal and chemical stability. Herein, we demonstrate an electrochemical approach for surfaceanchoring of an N-heterocyclic carbene (NHC) nanolayer on a copper electrode by electro-deposition of alkyne-functionalized imidazolium cations. Water reduction reaction generated a high concentration of hydroxide ions that induced deprotonation of imidazolium cations and self-assembly of NHCs on the copper electrode. In addition, alkyne group deprotonation enabled on-surface polymerization by coupling surfaceanchored and solvated NHCs, which resulted in a 2 nm thick NHC-nanolayer. Copper film coated with a NHCnanolayer demonstrated high oxidation resistance at elevated temperatures and under alkaline conditions.
The wide use of copper is limited by its rapid oxidation. Main oxidation mitigation approaches involve alloying or surface passivation technologies. However, surface alloying often modifies the physical properties of copper, while surface passivation is characterized by limited thermal and chemical stability. Herein, we demonstrate an electrochemical approach for surface‐anchoring of an N‐heterocyclic carbene (NHC) nanolayer on a copper electrode by electro‐deposition of alkyne‐functionalized imidazolium cations. Water reduction reaction generated a high concentration of hydroxide ions that induced deprotonation of imidazolium cations and self‐assembly of NHCs on the copper electrode. In addition, alkyne group deprotonation enabled on‐surface polymerization by coupling surface‐anchored and solvated NHCs, which resulted in a 2 nm thick NHC‐nanolayer. Copper film coated with a NHC‐nanolayer demonstrated high oxidation resistance at elevated temperatures and under alkaline conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.