Abstract. Temperature in northeast Greenland is expected to rise at a faster rate than the global average as a consequence of anthropogenic climate change. Associated with this temperature rise, precipitation is also expected to increase as a result of increased evaporation from a warmer and ice-free Arctic Ocean. In recent years, numerous palaeoclimate projects have begun working in the region with the aim of improving our understanding of how this highly sensitive region responds to a warmer world. However, a lack of meteorological stations within the area makes it difficult to place the palaeoclimate records in the context of present-day climate. This study aims to improve our understanding of precipitation and moisture source dynamics over a small arid region located at 80∘ N in northeast Greenland. The origin of water vapour for precipitation over the study region is detected by a Lagrangian moisture source diagnostic, which is applied to reanalysis data from the European Centre for Medium-Range Weather Forecasts (ERA-Interim) from 1979 to 2017. While precipitation amounts are relatively constant during the year, the regional moisture sources display a strong seasonality. The most dominant winter moisture sources are the North Atlantic above 45∘ N and the ice-free Atlantic sector of the Arctic Ocean, while in summer the patterns shift towards local and north Eurasian continental sources. During the positive phases of the North Atlantic Oscillation (NAO), evaporation and moisture transport from the Norwegian Sea are stronger, resulting in larger and more variable precipitation amounts. Testing the hypothesis that retreating sea ice will lead to an increase in moisture supply remains challenging based on our data. However, we found that moisture sources are increasing in the case of retreating sea ice for some regions, in particular in October to December. Although the annual mean surface temperature in the study region has increased by 0.7 ∘C per decade (95 % confidence interval [0.4, 1.0] ∘C per decade) according to ERA-Interim data, we do not detect any change in the amount of precipitation with the exception of autumn where precipitation increases by 8.2 [0.8, 15.5] mm per decade over the period. This increase is consistent with future predicted Arctic precipitation change. Moisture source trends for other months and regions were non-existent or small.
Abstract. Temperature in northeast Greenland is expected to rise at a faster rate than the global average as consequence of anthropogenic climate change. Associated with this temperature rise, precipitation is also expected to increase as a result of increased evaporation from a warmer and ice-free Arctic Ocean. In recent years, numerous palaeoclimate projects have begun working in the region with the aim of improving our understanding of how this highly-sensitive region responds to a warmer world. However, a lack of meteorological stations within the area makes it difficult to place the palaeoclimate records in the context of present-day climate. This study aims to improve our understanding of precipitation and moisture source dynamics over a small arid region located at 80° N in northeast Greenland. The origin of water vapour for precipitation over the study region is detected by a Lagrangian moisture source diagnostic, which is applied to reanalysis data from the European Centre for Medium-Range Weather Forecasts (ERA-Interim) from 1979 to 2017. While precipitation amounts are relatively constant during the year, the regional moisture sources display a strong seasonality. The most dominant winter moisture sources are the North Atlantic above 45° N and the ice-free Atlantic sector of the Arctic Ocean, while in summer the patterns shift towards local and north Eurasian continental sources. During the positive phases of the North Atlantic Oscillation (NAO), evaporation and moisture transport from the Norwegian Sea is stronger, resulting in larger and more variable precipitation amounts. Testing the hypothesis that retreating sea ice will lead to increase in moisture supply remains challenging based on our data. However, we found that moisture sources are increasing in case of retreating sea ice for some regions, in particular in October to December. Although the annual mean surface temperature in the study region has increased by 0.7 °C dec-1 (95 % confidence interval [0.4, 1.0] °C dec-1) according to ERA-Interim data, we do not detect any change in the amount of precipitation with the exception of autumn where precipitation increases by 8.2 [0.8, 15.5] mm dec-1 over the period. This increase is consistent with future predicted Arctic precipitation change. Moisture source trends for other months and regions were non-existent or small.
No abstract
Abstract. In the hydrological year 2021/22 Alpine glaciers showed unprecedented mass loss. On Hintereisferner (Ötztal Alps, Austria), the glacier-wide mass balance was −3319 kg m−2. Near-daily observations of surface elevation changes from a permanent terrestrial laser scanning setup allowed determining the day when the mass balance of Hintereisferner started to become negative. This Glacier Loss Day (GLD) was already reached on 24 June in 2022 and gave way to a long ice ablation period. In 2021/22, this and the high cumulative positive degree days explain the record mass loss. By comparing the GLDs of 2019/20–2021/22, we found a gross yet expressive indicator of the glacier’s imbalance with the persistently warming climate.
<p>Northeast Greenland is predicted to be one of the most sensitive terrestrial areas of the Arctic to anthropogenic climate change, resulting in an increase in temperature that is much greater than the global average. Associated with this temperature rise, precipitation is also expected to increase as a result of increased evaporation from an ice-free Arctic Ocean. In recent years, numerous palaeoclimate projects have begun working in the region with the aim of improving our understanding of how this highly-sensitive region responds to a warmer world. However, a lack of meteorological stations within the area makes it difficult to place the palaeoclimate records in the context of modern climate.</p><p>This study aims to improve our understanding of precipitation and moisture source dynamics over a small arid region located at 80 &#176;N in Northeast Greenland. This region hosts many speleothem-containing caves that are being studied in the framework of the Greenland Caves Project (greenlandcavesproject.org). The origin of water vapour for precipitation over the study site is detected by a Lagrangian moisture source diagnostic, which is applied to reanalysis data from the European Centre for Medium-Range Weather Forecasts (ERA-Interim) from 1979 to 2017.</p><p>While precipitation amounts are relatively constant during the year, the regional moisture sources display a strong seasonality. The most dominant winter moisture sources are the ice-free North Atlantic ocean above 45 &#176;N, while in summer the patterns shift towards more local and North Eurasian continental sources. During positive North-Atlantic Oscillation (NAO) phases evaporation and moisture transport from the Norwegian Sea is stronger, resulting in larger and more variable precipitation amounts. Although the annual mean temperature in the study region has increased by 0.7 &#176;C dec <sup>-1</sup> (95% confidence interval [0.4, 1.0] &#176;C dec <sup>-1</sup> ) according to ERA-Interim data, we do not detect any change in the amount of precipitation with the exception of autumn where precipitation increases by 8.2 [0.8, 15.5] mm dec&#160;<sup>-1</sup> over the period. This increase is consistent with future predicted Arctic precipitation change.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.