contributed equally to this work Thyroid hormone, acting through several nuclear hormone receptors, plays important roles in thermogenesis, lipogenesis and maturation of the neonatal brain. The receptor specificity for mediating these effects is largely unknown, and to determine this we developed mice lacking the thyroid hormone receptor TRα1. The mice have an average heart rate 20% lower than that of control animals, both under normal conditions and after thyroid hormone stimulation. Electrocardiograms show that the mice also have prolonged QRS-and QT end -durations. The mice have a body temperature 0.5°C lower than normal and exhibit a mild hypothyroidism, whereas their overall behavior and reproduction are normal. The results identify specific and important roles for TRα1 in regulation of tightly controlled physiological functions, such as cardiac pacemaking, ventricular repolarisation and control of body temperature.
We investigated the effects of exendin-4 on neural stem/progenitor cells in the subventricular zone of the adult rodent brain and its functional effects in an animal model of Parkinson's disease. Our results showed expression of GLP-1 receptor mRNA or protein in the subventricular zone and cultured neural stem/progenitor cells isolated from this region. In vitro, exendin-4 increased the number of neural stem/progenitor cells, and the number of cells expressing the neuronal markers microtubule-associated protein 2, beta-III-tubulin, and neuron-specific enolase. When exendin-4 was given intraperitoneally to naïve rodents together with bromodeoxyuridine, a marker for DNA synthesis, both the number of bromodeoxyuridine-positive cells and the number of neuronal precursor cells expressing doublecortin were increased. Exendin-4 was tested in the 6-hydroxydopamine model of Parkinson's disease to investigate its possible functional effects in an animal model with neuronal loss. After unilateral lesion and a 5-week stabilization period, the rats were treated for 3 weeks with exendin-4. We found a reduction of amphetamine-induced rotations in animals receiving exendin-4 that persisted for several weeks after drug administration had been terminated. Histological analysis showed that exendin-4 significantly increased the number of both tyrosine hydroxylase- and vesicular monoamine transporter 2-positive neurons in the substantia nigra. In conclusion, our results show that exendin-4 is able to promote adult neurogenesis in vitro and in vivo, normalize dopamine imbalance, and increase the number of cells positive for markers of dopaminergic neurons in the substantia nigra in a model of Parkinson's disease.
Skeletal muscle is known to be a target for the active metabolite of thyroid hormone, i.e., 3,5,3'-triiodothyronine (T(3)). T(3) acts by repressing or activating genes coding for different myosin heavy chain (MHC) isoforms via T(3) receptors (TRs). The diverse function of T(3) is presumed to be mediated by TR-alpha(1) and TR-beta, but the function of specific TRs in regulating MHC isoform expression has remained undefined. In this study, TR-deficient mice were used to expand our knowledge of the mechanisms by which T(3) regulates the expression of specific MHC isoforms via distinct TRs. In fast-twitch extensor digitorum longus (EDL) muscle, TR-alpha(1)-, TR-beta-, or TR-alpha(1)beta-deficient mice showed a small but statistically significant decrease (P < 0.05) of type IIB MHC content and an increased number of type I fibers. In the slow-twitch soleus, the beta/slow MHC (type I) isoform was significantly (P < 0. 001) upregulated in the TR-deficient mice, but this effect was highly dependent on the type of receptor deleted. The lack of TR-beta had no significant effect on the expression of MHC isoforms. An increase (P < 0.05) of type I MHC was observed in the TR-alpha(1)-deficient muscle. A dramatic overexpression (P < 0.001) of the slow type I MHC and a corresponding downregulation of the fast type IIA MHC (P < 0.001) was observed in TR-alpha(1)beta-deficient mice. The muscle- and fiber-specific differences in MHC isoform expression in the TR-alpha(1)beta-deficient mice resembled the MHC isoform transitions reported in hypothyroid animals, i.e., a mild MHC transition in the EDL, a dramatic but not complete upregulation of the beta/slow MHC isoform in the soleus, and a variable response to TR deficiency in different soleus muscle fibers. Thus the consequences on muscle are similar in the absence of thyroid hormone or absence of thyroid hormone receptors, indicating that TR-alpha(1) and TR-beta together mediate the known actions of T(3). However, it remains unknown how thyroid hormone exerts muscle- and muscle fiber-specific effects in its action. Finally, although developmental MHC transitions were not studied specifically in this study, the absence of embryonic and fetal MHC isoforms in the TR-deficient mice indicates that ultimately the transition to the adult MHC isoforms is not solely mediated by TRs.
Parkinson's disease is characterized by motor deficits caused by loss of midbrain dopaminergic neurons. Neurotrophic factors and cell transplantation have partially restored function in models of Parkinson's disease, but have had limited effects in humans. Here we show that intracerebroventricular administration of platelet-derived growth factor-BB can offer an alternative strategy to restore function in Parkinson's disease; In animal models of nigrostriatal injury, a two weeks treatment with plateletderived growth factor-BB resulted in long-lasting restoration of striatal dopamine transporter binding sites and expression of nigral tyrosine hydroxylase. It also normalized amphetamine-induced rotational behavior in 6-hydroxydopamine lesioned rats. Platelet-derived growth factor-BB promoted proliferation of neural progenitor cells in the subventricular zone. The effects on dopaminergic neurons and functional recovery could be blocked by co-infusion with a proliferation inhibitor, indicating a link between the proliferative and anti-parkinsonian effects. Based on the current data, we consider platelet-derived growth factor-BB a clinical candidate drug for treatment of Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.