Background The deleterious effects of diabetes mellitus (DM) over development are apparently due to an increase in oxidative stress. Some antioxidants could prevent developmental alterations produced by diabetic state. Extracts of plants of the genus Buddleja are used traditionally for Mexican indigens to ameliorate some diseases. The purpose of this work was to evaluate the effect of the extract of Buddleja cordata over diabetic embryopathy. Methods Two experimental approaches were used: an in vivo study and an in vitro model. In the first, rats were treated with streptozotocin, streptozotocin plus methanolic extract of B. cordata, or none. Females were sacrificed at gestational day (GD) 19, and biochemical clinical parameters were measured; also, the fetuses were obtained and morphologically analyzed. In the in vitro model, a verbascoside‐enriched fraction (VEF) of the extract was used in whole embryo culture in order to search for the mechanisms for embryoprotection effect over hyperglycemia‐induced malformations. Results In the in vivo experiments, B. cordata extract reduces the frequency and severity of fetal malformations produced by chemically induced diabetes, and additionally partially ameliorates the diabetic condition; in the in vitro model, both severity and frequency of embryo dysmorphogenesis were reduced by the VEF; also, this fraction reduces lipoperoxidation without affecting the activity of the antioxidant enzymes. Conclusion The results suggest that verbascoside of methanolic extract and enriched fraction can directly affect the redox state, and thus, prevents the embryotoxicity mediated by oxidative stress, in embryos of diabetic pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.