Activated carbons were prepared from a lignocellulosic material, African palm shells (Elaeis guineensis), by chemical impregnation of the precursor with solutions of 1–7% w/v Cu(NO3)2 at five different concentrations. These were carbonized in a carbon dioxide atmosphere at 1073 K to obtain different carbons. Their textural properties were characterized by nitrogen and carbon dioxide adsorption isotherms in order to evaluate the pore-size distribution. The immersion enthalpies of the activated carbons in benzene, dichloromethane, and water were determined. The CO2 adsorption capacities of the materials at 273 K under low-pressure conditions were also determined. Chemical characterization was performed by mass spectrometry, Fourier transform infrared spectroscopy, and temperature-programmed reduction. With this method of preparation under the concentrations described, activated micro–mesoporous carbons were obtained, with the formation of highly mesoporous solids that favored the process of diffusion of molecules of CO2 into the material. Here, we show that activated carbons were obtained with different textural characteristics: surface Brunauer–Emmett–Teller areas varied between 473 and 1361 m2 g–1 and micropore volume between 0.18 and 0.51 cm3 g–1. The activated carbon with the highest values of textural parameters was ACCu5-1073. Micro–mesoporous solids were obtained with the methodology used. This is important as it may help the entry of CO2 molecules into the pores. The adsorption of CO2 in the materials prepared presented values between 103 and 217 mg CO2 g–1; the values of volume of narrow microporosity obtained were between 0.16 and 0.45 cm3 g–1. The solid with the greatest capacity for adsorption of CO2 and volume of narrow microporosity was ACCu3-1073. The use of these solids is of importance for future practical and industrial applications. The adsorption kinetic of CO2 in the activated carbons prepared with metallic salt of copper is in good accordance with the intraparticle diffusion model, for which diffusion is the rate-limiting step. The adsorption of CO2 in the prepared activated carbons is favorable from the energy and kinetic point of view, as these accompanied by the presence of wide micro–mesoporosity favor the entry of CO2 into the micropores.
In this work Ni(II) and Cr(III) adsorption on Durvillaea antarctica surface were studied, optimal condition of pH, adsorption time is achieved at pH 5.0, with contact times of 240 and 420 minutes for a maximum adsorption capacity of 32.85 and 102.72 mg g–1 for Ni(II) and Cr(III), respectively. The changes in the vibration intensity of the functional groups detected in the starting material by Fourier transform infrared spectroscopy and the opening of the cavities after the biosorption process detected by scanning electron microscopy images suggested the interaction of the metal ions with the surface and the changes in the chemical behavior of the solid. The heavy metal adsorption equilibrium data fitted well to the Sips model. The effect of competitive ions on adsorption equilibrium was also evaluated, and the results showed that the two metals compete for the same active sites of the biosorbent; the increase of the Ni(II) initial concentration increases its adsorption capacity but decreases the adsorption capacity of Cr(III).
Caffeine and diclofenac are molecules with high human intake, and both belong to the ‘emergent’ class of contaminants. These compounds have been found at different concentrations in many sources of water worldwide and have several negative impacts on aquatic life systems; that is why the search for new alternatives for their removal from aqueous media is of transcendental importance. In this sense, adsorption processes are an option to attack this problem and for this reason, biochar could be a good alternative. In this regard, were prepared six different biochar from fique bagasse (FB), a useless agroindustry by-product from fique processing. The six biochar preparations were characterized through several physicochemical procedures, while for the adsorption processes, pH, adsorption time and concentration of caffeine and diclofenac were evaluated. Results showed that the biochar obtained by pyrolysis at 850 °C and residence time of 3 h, labeled as FB850-3, was the material with the highest adsorbent capacity with values of 40.2 mg g−1 and 5.40 mg g−1 for caffeine and diclofenac, respectively. It was also shown that the experimental data from FB850-3 fitted very well the Redlich–Peterson isotherm model and followed a pseudo-first and pseudo-second-order kinetic for caffeine and diclofenac, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.