Soybean is an important natural source of isoflavones, but their concentration is likely to be influenced by external factors, such as climatic conditions and soil tillage systems. However, there is minimal information about the effects of such external factors on the isoflavone concentration in soybeans grown in Europe. Therefore, in this study, field experiments were established in Romania to investigate the potential impacts of three different soil tillage systems—conventional, minimum tillage and no-tillage—on crop yields and the isoflavone concentration of soybeans for three experimental years, 2014–2016. Our experimental results indicated that the soil tillage systems had little impact on the soybean yields each year. However, the 2016 yield was found to be higher than the 2014 and 2015 yields under all three soil systems. For every experimental year, the higher yield was recorded by the conventional system, followed by the minimum tillage system and no-tillage system under first weed control (weed control two (wct2): S-metolaclor 960 g/L, imazamox 40 g/L and propaquizafop 100 g/L). Likewise, the soil tillage system did not have a significant influence on the total isoflavone concentrations. Nevertheless, we noticed some variations in the individual isoflavone concentration (daidzin, genistin, glycitin, daidzein, genistein) in each year. Altogether, the minimum tillage and no-tillage systems may be employed as a suitable soil tillage system in soybean farming without an impact on the total isoflavone.
In vitro cultures have been used as an effective means to achieve a high level of secondary metabolites in various plants, including soy. In this study, the contents of α-, γ-, and δ- tocopherol were quantified in soybean callus, and their amounts were compared to those of soybeans cultivated using the conventional tillage system with three weed controls (respectively without herbicide and with two variants of herbicide). Soybean callus was produced using Murashige and Skoog 1962 (MS) medium supplemented with 0.1 mg/L 6-Benzylaminopurine (BAP) and 0. 1 mg/L Thidiazuron (TDZ). The highest amount of fresh callus was obtained from soybeans from the conventional tillage system with second weed control (S-metolachlor 960 g/L, imazamox 40 g/L, and propaquizafop 100 g/L) respectively 13,652.4 ± 1177.62 mg. The analyzed tocopherols were in much higher content in soy dry callus than the soybean seeds (5.63 µg/g compared with the 0.35 α-toco in soybean, 47.57 µg/g compared with 18.71 µg/g γ-toco or, 5.56 µg/g compared with 1.74 µg/g β-toco). The highest content of the three analyzed tocopherols was γ -tocopherol, both in callus and soybeans. Furthermore, the data showed that herbicides used in soybean culture significantly influenced both the in vitro callus production and the tocopherol callus content (p ˂ 0.05). Altogether, soybean callus can be an important source of tocopherols, and herbicides significantly influence in vitro callus production and the tocopherol callus content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.